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The general global optimization paradigm

General optimization problem

min f(x)
s.t. xeScR™,
x € [l u],

where
f is not necessarily a convex function, S is not necessarily a
convex set.
B Ideal goal: Find a globally optimal solution: z*, i.e. a* € Sn[l,u]
such that OPT := f(a*) < f(z) Yz e Sn[l,u].
What we will usually settle for: z* € Sn[l,u] (may be
approximately feasible) and a lower bound: LB such that:
fxz*)-LB
LB

is “small” .

x* e Sn[l,u] and gap :=

Dey Convexification in global optimization



Convexification in global optimization

Introduction

Solving using Branch-and Bound

Branch-and-bound

min f(x)

s.t. x in feasible region
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Solving using Branch-and Bound

Branch-and-bound
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Solving using Branch-and Bound

Branch-and-bound

X<=x0 | y>-x 0

Divide the domain into two parts
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Solving using Branch-and Bound

Branch-and-bound

Lower bound for left node/
°
g

Upper bound for right node
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Solving using Branch-and Bound

Branch-and-bound

Can prune
left node!

Upper bound for right node
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Discussion of Branch-and-bound algorithm

m The method works because: As the domain becomes “smaller” in
the nodes, we are able to get a better (tighter) lower bound on
f(z). (#)

m Usually S is not a convex set, then we need to obtain both: (1) a
convex function that lower bounds f(z) and (2) A convex
relaxation of S.

Our task is to obtain:
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Our goals for the next few hours
We want to study “convexification” for:

Quadrically constrainted quadratic program (QCQP)

min z'Qx+c'x
st. z'Q'z+ (a")Tx <b; Vie[m]
x € [l,u],

Very general model:
m Bounded polynomial optimization (replace higher order terms by
quadratic terms by introducing new variables). For example:

Yz <3 =y =w,wz < 3.

m Bounded integer programs (including 0 -1 integer programs). For
example:

re{0,1} = az*-z=0
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Our goals for the next few hours

m Beautiful theory of Lasserre hierarchy which gives convex hulls via
a hierarchy of Semi-definite programs (SDPs). (Also called the
sums-of-square approach). We are not covering this theory. @

m Instead we will consider simple functions and simple sets that are
relaxations of general QCQPs are consider their “convexification”:
You can think of this as the MIILP-approach. Even though there are
nice hierarchies for obtaining convex hulls in IP, in practice, we
construct linear programming relaxations within branch-and-bound
algorithm, which are often strengthened by addition of constraints
obtained from the convexification of simple substructures.

m There will be other connections with integer programming...

m Usually, we will stick to linear programming (LP) or second
order cone representable (SOCr) convex functions and sets for
our convex relaxations.
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Convex envelope

Definition: Convex envelope

Given S ¢ R"™ and f:R"™ - R, we want:

m A function g : R™ — R that is an under estimator of f over S and,

m g should be convex.

Because (pointwise) supremum of a collection of convex functions is a
convex function, we can achieve “the best possible convex under
estimator” as follows:

Definiton: Convex envelope

Given a set S € R™ and a function f:S — R, the convex envelope
denoted as convg(f) is:

convg(f)(x) =sup{g(x)|g is convex on conv(S) and g(y) < f(y) Vy € S}.
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Convex envelope example

Convex envelope
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Convex envelope

Convex envelope example

Convex envelope

convy(f)
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Convex envelope

Another way to think about convex envelope

Definiton: Convex Envelope

Given a set S € R™ and a function f:5 —» R,

convg(f)(x) = sup{g(z)|g is convex on conv(S) and g(y) < f(y) Yy e S}.

Proposition (1)

Given a set S € R" and a function f:S — R, let
epig(f) == {(w,z)|w > f(x),x € S} denote the epigraph of f restricted
to S. Then the convex envelope is:

convg(f)(x) =inf{y| (y,z) € conv(epig(f))}. (1)

Dey Convexification in global optimization



Convexification in global optimization

Convex envelope

Convex envelope example contd.

Convex envelope
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Convex envelope example contd.

Convex envelope

\ /
Epigraph of f
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Convex envelope

Convex envelope example contd.

Convex envelope
\

/
\ Epigraph of f

Convex hull of
Epigraph of f
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Convex envelope

A simple property of convex envelope
Proposition (1)

convs (f)(x) = inf{y| (y,) € conv(epig(f))} .

Corollary (1)
If 2° is an extreme point of S, then

Proof.

We verify the contrapositive:

m Consider any Z € S. If convs(f)(Z) < f(&), then (via Proposition (1))

there must be {z}7%? ¢ S:

n+2

n+2 .
&= X', f(2)> > Nif(a),
i=1

=1l
where A € A (i.e. \; 20 Vie[n+2], 22N\ =1).

m If =2 Vi then f(2)# 2177 N\ f(2') = xz # 2" = % is not extreme.
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When does extreme points of S describe the convex
envelope of f(z)?

m We know now that convg(f)(2?) = f(2°) for extreme points.
m For 2° € S and z° ¢ ext(S), we know that

convg(f)(z") = inf{y ly=>" Nif(z), 2% = > Nat b e S N e A} :
m It would be nice (why?) if:

convg(f)(z°) = inf{y |y = Z/\if(xi)ﬂzz:o = Z/\,Z'Ii,;lfi eext(S),\ e A} .
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Convex envelope

Concave function work: proof by example

Concave function

Concave
function F(x)

convg(F)
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Convex envelope

Sufficient condition for polyhedral convex envelope of
f(z): When f is edge concave

Definiton: Edge concave function

Given a polytope S € R™. Let Sp = {d1,...,d;} be a set of vectors
such that for each edge E (one-dimensional face) of S, Sp contains a
vector parallel to E. Let f:S — R" be a function. We say [ is edge
concave for S if it is concave on all line segments in S that are parallel
to an edge of S, i.e., on all the sets of the form:

{yeS|y=z+Md},

for some z € S and d € Sp.
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Convex envelope

Example of edge concave function

Bilnear function

m S:={(z,y) eR?|0<z,y<1}.
m Sy :{(0’1),(]%0)}

m f(z,y) = xy is linear for all segments in S that are parallel to an
edge of S.

m Therefore f is a edge concave function over S.

Note: f(z,y) = xy is not concave.
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Convex envelope

Polyhedral convex envelope of f(x): f is edge concave

Theorem (Edge concavity gives polyhedral envelope [Tardella (1989)] )

Let S be a polytope and f: S — R"™ is an edge concave function. Then
COII\’S(.f)(:E) = COIIV()a:t(S)(.f)(:I")J where

conVyt(s)(f)(x) = min {y\y = Z)\if(zi)w = Z)\ixiwi eext(S),Ae A}.

Corollary [Rikun (1997)]

Let f =TI, x; and S = [l,u]. Then convs(f)(x) = convegi(s)(f)(x).
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Convex envelope

Polyhedral convex envelope of f(x): f is edge concave

Theorem (Edge concavity gives polyhedral envelope [Tardella (1989)] )

Let S be a polytope and f: S - R" is an edge concave function. Then
convs () (x) = convesecs) (f)(z), where

CONV gy (s)(f)(2) := min {y\y = Z)\Lf(TL),T = Z)\LT',T‘ eext(S),\e A}.

Proof sketch

m Claim 1: Since f is edge concave, we obtain: f(x) > conve(s)(f)(x)
for all z € S.

m Claim 2: If f(x) > conveye(s)(f)(z), then

convs(f)(x) = convegy(s)(f)(x).
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Proof of Claim 1

To prove: f(z) > convegs)(f)(x)

Let & e rel.int(F), F' is a face of S. Proof by induction on the
dimension of F.

m Base case: Consider & which belongs to a one-dimensional face of
S, i.e. & belongs to an edge of f. Then since edge-concavity, we
obtain that f(Z) > convg(s)(f)(Z).

m Inductive step: Let F be a face of S where dim(F') > 2. Consider
# e rel.int(F). If we show that there is 2', z? belonging to proper
faces of F, such that & = Az + Aax?, A1 + Ao =1, A1, A2 >0, and
F(@) 2 M f(2h) + Ao f(2?). Then applying this argument
recursively to f(z!) and f(2?) we obtain the result.

m Indeed, consider an edge of F' and let d be the direction of this
edge. Then there exists p1, pe > 0 such that: & + p1d and & — paod
belong to lower dimensional faces of F'. Now on this segment
edge-concavity = concavity, so we are done.
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Proof of Claim 2
convs(f)(z") = 1nf{1/\ Y= Z)\ f(a’ = Zx\ 'z’ e S, Ne A}

convef[,t(s)(f)(wo) = inf{y|y = Z)\q’,f(il?i)7$0 = Z)\,,-xi,xz eext(S), e A}.

To prove: f(x) > conveyz(sy(f)(x), implies convs(f)(z) = conveg sy (f)(x)

m Note that convs(f) < conveyy(s)(f) (by definition), so it is sufficient to
prove convs(f) > convex(s)(f)-

m Indeed, observe that
convs(f) > convg (convex(s)(f))

CONVext(S) (f)

where the first inequality because of Claim 1, f(x) > conve,(s)(f)(x),
and the second inequality because conveyi(s)(f) is a convex function.
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Convex hull of simple sets

McCormick envelope

McCormick envelope

P:={(w,z,y)|w=2y,0< 2,y <1}

We want to find conv(P).

m P={(w,z,y)| w=2y,0<2,y<1}
—_—— ——
Fl@y)=zy s

m So we need to find the convex envelope (and similarly, concave
envelope) of f(x,y) = xy over z,y € [0,1]).

m By previous section result on edge-concavity, we only need to
consider the extreme points of S = [0, 1]2.

m conv(P) = conv{(0,0,0),(1,0,0),(0,1,0),(1,1,1)}

conv(P) = {(w,z,y) |[w>0,w>z+y—-1,w<x,wy}.

McCormick Envelope

Dey Convexification in global optimization



Convexification in global optimization

Convex hull of simple sets

McCormick envelope

Alternative proof of validity of McCormick envelope

] (z-0)(y-0) >0 zy20 = w > 0.
| — —~

product of 2 non-negative trms replace w=ay

m (1-2)(1-vy) >0 ry>r+y—-1l=w>r+y—1.
| —
product of 2 non-negative trms

B (z-0)(1-y)20=>w<z.

B(1-2)(y-0)20=>w<y.

m This is the Reformulation-linearization-techique (RLT) view
point (Sherali-Adams).
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Convex hull of simple sets
M

cCormick envelope

Our first convex relaxation of QCQP

(QCQP) : min " Aoz + al x
s.t. xTAk,x+a;‘Cm§bk k=1,...,.K

l<z<u

(Lifted QCQP) : min Ao-X  +agw
——
i, (A0)ij Xij
s.t. Ap-X  +alz<by, k=1,...,K
——
2ij(Ar)ij Xij

l<x<u

T .
< —— —Nonconvexity

(Note: X is the “outer product” of z, i.e. X is nxn)
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Convex hull of simple sets

McCormick envelope

Our first convex (LP) relaxation of QCQP
(QCQP) : min & Aoz + al x
st. 2T Apz + a;‘:m <b, k=1,...,K

l<z<u

(Lifted QCQP) : min Ag- X +ag
st. Ap-X+az<by k=1,... K

l<xz<u
McCormick (LP) Relaxation: replace X = zz' above by:
Xij 2 lixy + ljxs — Uil
Xij > uixj + ujx; — Uiu;
Xij <lixj +ujzs — liug

Xij Su;x; + lj:ri - u,-lj
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Convex hull of simple sets

McCormick envelope

Semi-definite programming (SDP) relaxation of QCQPs

(QCQP) : min " Aoz + al x
s.t. xTAk.x+a;‘Cm§bk k=1,...,.K

I[<z<u

(Lifted QCQP) :min Ao- X + ag @
st. Ap-X+atz<by k=1,... K

[<x<u

T

SDP Relaxation: replace X —zz" = 0 above by:
X —za" € cone of positive-semi definite matrix

1 T . . . .
= [ - J;( :| € cone of positive-semi definite matrix.
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Convex hull of simple sets

McCormick envelope

Comments

m The SDP relaxation is the first level of the sum-of-square
hierarchy. (We will not discuss this more here)

m The McCormick relaxation is first (basic) level of the RLT
hireranchy.

m The McCormick relaxation and the SDP relaxation are
incomparable. So many times if one is able to solve SDPs, both
the relaxations are thrown in together.

m Note that the McCormick relaxation has the (#) property, i.e. as
the bounds [I,u] get tighter, the McCormick envelopes gets
better. In particular, if [ = u, then the McComick envelope is
exact. Therefore, we can obtain “asymptotic convergence of lower
and upper bound” using a branch and bound tree with
McCormick relaxation, as the size of the tree goes off to infinity.
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Convex hull of simple sets

Extending the McCormick envelope ideas

Extending the McCormick envelope argument: Using
extreme points of S to construct convex hull

Lifted QCQP) : min Ag- X +al z
QCQ 0 0
s.t. Ak-X+afxsbk k=1,....K
0<x<1

For now ignore the =7 terms and consider the set:

n(n-1)

Q= {(X,2) e R™5 xR | X5 = iy Vi, j € [n]i # G, € [0,1]"}

(Here I = 0 and u = 1 without loss of generality, by rescaling the
variables.)
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Convex hull of simple sets

Extending the McCormick envelope ideas

Extending the McCormick envelope argument: Using
extreme points of S to construct convex hull

Theorem ([Bm'(‘l‘. Letchford (2( N)!))D

Consider the set

n(n-1)
Q={(X,z)eR™ 2 xR"|X;; =zz;Vi,je[n],i+j,ze[0,1]"}.
Then,

n(n-1)

conv(Q) :==conv|{(X,z) eR x R™| X5 = ziz;Vi,j € [n],i# j,x e {0,1}"

Boolean quadric polytope
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Convex hull of simple sets
E

xtending the McCormick envelope ideas

Krein - Milman theorem

Theorem (Krein - Milman Theorem)

Let S cR™ be a compact set. Then conv(S) = conv(ext(S)).
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Convex hull of simple sets
E

xtending the McCormick envelope ideas

Proof of Theorem

Proof using “Extreme point of S argument”

m By Krein - Milman Theorem, It is sufficient to prove that the extreme
points of Q:

n(n-1)

Q={(X,z)eR 2 xR"|X; =zx;Vi,j€[n],i+j2e[0,1]"}

satisfy x € {0,1}".
m Suppose (X, %) € @ is an extreme point of S. Assume by contradition
Z; ¢ {0,1}. Consider the following points:

{E(-l) _ Zj Jj#1 1‘(-2) _ Z; J#1
J .fi+6 j:Z J i}i*E j:Z
X U,V F T X U,V F 1
1 uv 9 2 uv )
Xz(w) :{ A~ (D) _ o X1(ru) :{ ~ o (2) _ s
TuTy V=1 Ty v=1

m Since there is no “square term”, x0 perturbs linearly with
perturbation of one component of z”.
m So (X,#)=0.5-(X® 2M) +0.5-(X® 2®) which is the required

contradiction.
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Convex hull of simple sets

Extending the McCormick envelope ideas

Consequence: Can use IP technology to obtain better
convexification of QCQP!

Lifted QCQP) : min Ag- X +al z
QCQ 0 0
s.t. Ak~X+afxsbk k=1,....K
0<x<1

Apart from the McCormick inequalities we can also add:
m Triangle inequality: @; + 2 + o — X35 — Xj — X <1
[ 1() %} Chvatal-Gomory cuts for BQP recently used successfully
by
BQP:={(X,z)|Xi; 20, X;; >xi+x; - 1, X;; <7, Xi5 <5 V (4,7) € [n],z € {0,1}"}
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Incorporating “data” in our sets

Introduction

(Lifted QCQP) :min Ag- X +al =
st. Ap-X+ale<by k=1,...,K

0<x<1

X =gzt

m We have explored convex hull of set of the form:

n(n

—1)
2

Q = {(X7(L') eR x R™ |X” = LCZZLJV’L] € [n],z +7,T € [0 1]”}

m Now we want to consider sets wich includes the data, for
example: A’s.
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Incorporating “data” in our sets

A packing-type bilinear knapsack set

A packing-type bilinear knapsack set

Consider the following set:

Pi={(z,y) €[0,1]" x [0,1]" | Zaiiﬁz@/i < b},
iz

where a; > 0 for all 7 € [n].
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Incorporating “data” in our sets

A packing-type bilinear knapsack set

The convex-hull of packing-type bilinear set

Proposition (3 Coppersmith, Giinliik, Lee, Leung (1999))

Let P:={(xz,y) €[0,1]" x [0,1]™| ¥; a;z;y; <b}. Then

Jw, Y azw; < b,
conv(P) :={ (z,y) | wi@i,yi€[0,1],wi 2 +y; -1, Vie[n]

Relaxed McCormick envelope

m Convex hull is a polytope.

m Shows the power of McCormick envelopes.
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Incorporating “data” in our sets

A packing-type bilinear knapsack set

Proof of Proposition(3): ¢

conv(P) :=Proj, . | 1 (z,y,

Yt aiwi < b,
w) ‘ Vi e [n]

R

______________________________________________________________________|]
m Observe P ¢ Proj, ,(R) = conv(P) ¢ Proj, , (R).
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Incorporating “data” in our sets

A packing-type bilinear knapsack set

Proof of Proposition(3): conv(F) 2 Proj, ,(R)

T aiw; < b,
conv(P) := Proj, , {(x,y,w) ‘ -1 i

Vie[n] }

It is sufficient to prove that the (x,y) component of
extreme points of R belong to P.
Let (w,%,7) be extreme point of R. For each i:

s a; >0 Vie[n])

Convexification in global optimization
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Incorporating “data” in our sets

A packing-type bilinear knapsack set

Proof of Proposition(3): conv(F) 2 Proj, ,(R)

T aiw; < b,
conv(P) := Proj, , {(x,y,w) ‘ -1 i

Vie[n] }

It is sufficient to prove that the (x,y) component of
extreme points of R belong to P.
Let (w,%,7) be extreme point of R. For each i:

s a; >0 Vie[n])
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Incorporating “data” in our sets

A packing-type bilinear knapsack set

Proof of Proposition(3): conv(F) 2 Proj, ,(R)

T aiw; < b,
conv(P) := Proj, , {(x,y,w) ‘ -1 i

Vie[n] }

It is sufficient to prove that the (x,y) component of
extreme points of R belong to P.
Let (w,%,7) be extreme point of R. For each i:

w=0

X+y<=1l+w

s a; >0 Vie[n])
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Incorporating “data” in our sets

A packing-type bilinear knapsack set

Proof of Proposition(3): conv(F) 2 Proj, ,(R)

T aiw; < b,
conv(P) := Proj, , {(x,y,w) ‘ -1 i

Vie[n] }

It is sufficient to prove that the (x,y) component of
extreme points of R belong to P.

Let (w,,7) be extreme point of R. For each i: O<w<1
Xx+y<=1l+w

s a; >0 Vie[n])
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Incorporating “data” in our sets

A packing-type bilinear knapsack set

Proof of Proposition(3): conv(F) 2 Proj, ,(R)

T aiw; < b,
conv(P) := Proj, , {(x,y,w) ‘ -1 i

Vie[n] }

It is sufficient to prove that the (x,y) component of
extreme points of R belong to P.

Let (w,%,7) be extreme point of R. For each i: w=1
n X+y<=1l+w
[
[

s a; >0 Vie[n])
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Incorporating “data” in our sets

Simplex-polytope product

A commonly occuring set

S:={(q,y,v) e R}* x R"2 x R""2

vij = qiy; Vi€ [n1],j € [n2], Ay <b, ge A }.

———
yeP 3L ;=1
Some applications:
m Pooling problem ( )
m General substructure in “discretize NLPs” (
)
m Network interdiction ( )
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Incorporating “data” in our sets

Simplex-polytope product

Convex hull of S

Theorem (Sherali, Alameddine [1992], Tawarmalani (2010),

Kilim¢-Karzan (2011))

Let

vij = qiy; Vi € [n1], j € [n2],
S = (q,y,v) c R’:l x R™2 x R™172 Ay < b,
qgeA

Then
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Simplex-polytope product

Proof of Theorem: 2

Theorem

Let
vij = qiy;Vi€[ni], j € [na],

S:=1(q,y,v) e R xR™ x R™"2 [ Ay <b,
qeA

Then

mS;CS. Vie [m]
] U:;ll S;cS.

m conv(U}, S;) € conv(S).
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Simplex-polytope product

Proof of Theorem: ¢
S:={(q,y,v) e RY' xR"™ x R™™ |v;; = qiy;Vi € [n1],5 € [n2], Ay <b,q € A}

m Pick (¢,9,0) € S. We need to show (q,9,0) € conv(U;2Y Ss)
m Let I ¢ [n1] such that ¢; # 0 for ¢ € [. Then it is easy to verify, (¢, 4, ?)
is the convex combination of the points of the form for ig € I:

(jio = €
~ig _ @
Yy Y N e . . € Sio Vio el
i y; ifi=1do
V.9 = o o .
v { 0 if 7+

m = (q,9,0) € conv(U} Si)

Dey Convexification in global optimization



4.2.1
Application: Pooling problem



Convexification in global optimization

Incorporating “data” in our sets

Simplex-polytope product

The Pooling Problem: Network Flow on Tripartite
Graph

m Network flow problem on
a tripartite directed
graph, with three type of
node: Input Nodes (I),
Pool Nodes (L), Output
Nodes (J).

INPUTS POOLS OUTPUTS

Dey Convexification in global optimization



Convexification in global optimization

Incorporating “data” in our sets

Simplex-polytope product

The Pooling Problem: Network Flow on Tripartite
Graph

m Network flow problem on
a tripartite directed
graph, with three type of
node: Input Nodes (I),
Pool Nodes (L), Output
Nodes (J).

m Send flow from input
nodes via pool nodes to
output nodes.

INPUTS POOLS OUTPUTS
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Simplex-polytope product

The Pooling Problem: Network Flow on Tripartite
Graph

m Network flow problem on
a tripartite directed
graph, with three type of
node: Input Nodes (I),
Pool Nodes (L), Output
Nodes (J).

m Send flow from input
nodes via pool nodes to
output nodes.

INPUTS POOLS OUTPUTS

m Each of the arcs and
nodes have capacities of
flow.
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Simplex-polytope product

The Pooling Problem: Other Constraints

m Raw material has
specifications (like
sulphur, carbon, etc.).

INPUTS POOLS OUTPUTS

0 —
v [ [+ ]

wrec: [ . @-
o (O—
[+]
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Simplex-polytope product

The Pooling Problem: Other Constraints

m Raw material has
specifications (like
sulphur, carbon, etc.).

INPUTS POOLS OUTPUTS

m Raw material gets mixed
at the pool producing
new specification level at
pools.

seect [l
seecz [l

®a
@_
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Simplex-polytope product

The Pooling Problem: Other Constraints

m Raw material has
specifications (like
sulphur, carbon, etc.).

neots i ouTPuTS m Raw material gets mixed

at the pool producing
new specification level at

sreor [l pools.
sec: [

m The material gets further
mixed at the output
nodes.
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Simplex-polytope product

The Pooling Problem: Other Constraints

INPUTS POOLS OUTPUTS

seect [l
seecz [l

Dey

Raw material has
specifications (like
sulphur, carbon, etc.).

Raw material gets mixed
at the pool producing
new specification level at
pools.

The material gets further
mixed at the output
nodes.

The output node has
required levels for each
specification.

Convexification in global optimization
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Simplex-polytope product
Tracking Specification

Data:

m )\ The value of
specification k at input node
i.

INPUTS POOLS OUTPUTS

seect [l
seecz [ Variable:

m pF: The value of
specification k at node [

B yq: Flow along the arc (ab).

Specification Tracking;: Z )\fyu = p;” Z Yij

iel jeJ

Inflow of Spec k Out flow of Spec k
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Simplex-polytope product

The pooling problem: ‘P’ formulation

max Y. wiy; (Maximize profit due to flow)
ijeA
Subject To:
Node and arc capacities.
Bl Total flow balance at each node.

Specification balance at each pool.

iel jeJ

Z /\fyil = pf (Z yu) < — = =Write McCormick relaxation of these

B Bounds on plj for all out put nodes j and specification k.
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Q Model

New Variable:

m q; : fraction of flow to [ from
iel

Z%‘z =1,q4 20,i€1.
iel

Dey

Convexification in global optimization
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Simplex-polytope product

Q Model

[Ben-Tal, Eiger, Gershovitz (1994)]
New Variable:

m q; : fraction of flow to [ from
1el

Z%z =1,q4 20,i€1.
iel

i Aidia

B =Y A
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Q Model

[Ben-Tal, Eiger, Gershovitz (1994)]
New Variable:

m q; : fraction of flow to [ from
1el

Z%z =1,q4 20,i€1.
iel

> i Aiia

P = Tier A
m v;;; : flow from input node 4
to output node j via pool
node .
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Q Model

[Ben-Tal, Eiger, Gershovitz (1994)]
New Variable:

m q; : fraction of flow to [ from
1el

Z%z =1,q4 20,i€1.
iel

> i Aiia

P = Tier A
m v;;; : flow from input node 4
to output node j via pool
node .

B Vil = QY
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implex-polytope product

Q Model

max Z WijYij + Z (wyy + wlj)vilj
iel,jed iel,leL,jeJ
s.t. vy =quy; Yiel,leL,jeJ<———-Write McCormick relaxation of these
Z qi1 =1 VieL
1€l
k k k k
aj (Zyw‘ +2 ylj) SNyt Y A <bj (Zyzj +, ylj)
i€l leL iel iel,leL iel leL

Capacity constraints

All variables are non-negative
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Simplex-polytope product

“PQ Model” Improved: Significantly better bounds

max Z WijYij + Z (wi + wlj)Uilj
iel,jeJ iel leL,jeJ
s.t. vy =qay; Yiel,leL,jeJ<——-Write McCormick relaxation of these
Zq” =1VilelL
iel
k k k k
a; (Zyij + Zylj) SN+ 2 Avig < b (Zyij 2 ylj)
iel leL iel iel,lel iel leL

Capacity constraints
All variables are non-negative

Z vij =y VlelL,jed
iel

Z vy < gy Viel,lelL.
jedJ
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A covering-type bilinear knapsack set

A covering-type bilinear knapsack set

Consider the following set:
Pi={(z,§) e R} xRY| 3 aidsgi > b},
i=1
where a; >0 for all i € [n] and b > 0.

Note that this is an unbounded set.
For convenience of analysis consider rescaled version:

P {(5,y) e R} xR | Y magi 2 1,

i=1

(For example: x; = %.ii,yi =7i)
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Is re-scaling okay?

Observation: Affine bijective map “commutes” with convex hull operation

Let ScR"™ and let f:R™ — R be an affine bijective map. Then:

f(conv(S)) = conv(f(S5)).

z € f(conv(S)) <— 3y:x=f(y),y=2yi)\i,)\EA

i=1

— Jy:z=f(y),fy) =Y FH)Ai, e A (f is bij. affine)
i=1

<= xeconv(f(9)).
Careful: Not usually true if f is only bijective, but not affine!
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The convex-hull of covering-type bilinear set

Theorem (Tawarmalani, Richard, Chung (2010))

Let P:={(z,y) e R? xR? | ¥, x;y; > 1}. Then

conv(P) := {(x,y) e R? xR}

n
Z\/xiyi > ].}
=1

Note: »it;/Z;y; 2 1 is a convex set because:
m /7;y; is a concave function for z;,y; 2 0.
m So YiL; /Ty is a concave function.
m f(x,y:) = \/ZT:¥; is a positively-homogenous, i.e.
F(n(u,v)) =nf(u,v) for all n > 0.
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A covering-type bilinear knapsack set

Proof of Theorem: “c”

{(a: y) € R x RY

szyz > 1}
i\/xiyi > 1}.
=1

conv(P) = (z,y) e R? xRY
——

To prove

H

conv(P)c H

m Sufficient to prove P € H. Let (£,9) € P. Two cases:
m If 3¢ such that #;9; > 1. Then \/#;4; > 1 and thus (£,9) € H.
m Else 7;9; < 1 for i € [n]. Thus 37 /Z:%: > Y7 ©:%; > 1 and thus
(2,9) e H.

Dey Convexification in global optimization



Convexification in global optimization

Incorporating “data” in our sets
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Proof of Theorem: “2”

conv(P)2 H

m Let (Z,9) := (£1,91, 82,02, - -y &En,Yn) € H. “WLOG:”

( jlvyl ) "?‘202 ) CE371}3 ) j747:l)4 coog ‘i’"dy’ﬂ )
—— S—— S S —

VE191=A1>0 \/Z202=X2>0 \/2303=A3>0 £4>0,94=0 2r,=0,9n>0

m So we have A1 + A2 + A3 > 1. LetS\i—sze[S]

m Consider the three points:

pl = (;17?17 A070A7 070’ ?\?70? M 07%)
p* = (0,0, ., 00 00, .., 00
p* = (0,0, 0,0, £,£, 00, ..., 00

m Trivial to verify that Aip’ + Aap® + Agp® = (2,9), and A+ A2+ g = 1.

L ——1 2 2
u ?{i:(%) :(ﬁ) ZI:pIEP. Similarly p® € P,p> € P.
A\ A1 A1

Dey Convexification in global optimization



Convexification in global optimization

Incorporating “data” in our sets
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An interpretation of the proof

The result in is more general.

“Two ingredients” in the proof

m “Orthogonal disjunction”: Define P; := {(z,y) € R} x R} | z;y; > 1}.
Then it can be verified that:

conv(P) = conv (Q Pi) .

m Positive homogenity: P; is convex set. Also,
P, = {(z,y) e RYxRY | \/z:y; > 1} < ——The “correct way” to write the set

This single term convex hull is described using the positive
homogenous function.
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Another example of convexification from

S = {(z1, T2, 73,24, T5,76) € RC | 212973 + 2475 + 26 > 1}, then

1 1
conv(S) := {(ml,xg,xg,m4,ac5,ac6) € Rf (x129w3)% + (1425)2 + 26 > 1}
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Lets talk about “representability” of the convex hull

m Up till now, we had polyhedral convex hull. This bilinear covering
set yields our first non-polyhedral example of convex hull.

m It turns out the set:

{<m,y> R xRT

i VITilYi 2 1}
i-1

is second order cone representable (SOCr).

Dey Convexification in global optimization



Convexification in global optimization

Incorporating “data” in our sets

A covering-type bilinear knapsack set

A quick review of second order cone representable sets:

Introduction
Polyhedron:
Ax-beRT
reR"

R™ is a closed, convex,
pointed and full dimensional
cone.

Conic set: ‘
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A quick review of second order cone representable sets:

Introduction
Polyhedron:
Ax-beRT
reR"

R™ is a closed, convex,
pointed and full dimensional
cone.

Conic set: ‘
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Second order conic representable set

Az -be K

Definiton: Second order cone

K= {u e R™ | [(ua, oy time)2 < i }

Second order conic representable (SOCr) set

A set S cR" is a second order cone representable if,
S :=Proj, {(z,y) | Az + Gy —be (K1 x Ko x K3 x---x K,)},
where K;’s are second order cone. Or equivalently,

S :=Proj, {(z,y)| HAZx + Giy s 2 < Ag + Gi"y b Vie [p]},
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Lets get back to our convex hull

n
(z,y) e RY xR} | > /a1
i=1

m In fact, the above set is Second order cone (SOCr) representable:
z,y € R?

n
2 ui

i=1

Ty > u; Vie[n]

v
—
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A covering-type bilinear knapsack set

Lets get back to our convex hull

(r,9) <RI XEL |3 Vi 2

m In fact, the above set is Second order cone (SOCr) representable:
z,y € RY
n
2. ui
i=1

vy, > ul Vie[n]

v
[t
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A covering-type bilinear knapsack set

Lets get back to our convex hull

(r,9) <RI XEL |3 Vi 2

m In fact, the above set is Second order cone (SOCr) representable:

z,y € RY
n
Zuq; > 1
i=1

v

(2 + ;)2 = (2 —y;)? 4u? Vie [n]
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A covering-type bilinear knapsack set

Lets get back to our convex hull

(o eme

vzl
=1

m In fact, the above set is Second order cone (SOCr) representable:

r,y € RY
n
Zui > 1
i=1
T+ Y 2 \/(Q’ui)2 +(z;—y;)? Vie[n]
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A covering-type bilinear knapsack set

Our convex hull is SOCr

(z,y) eRY xR} | > /iy > 1
i

m In fact, the above set is Second order cone (SOCr) representable:

r,y € RY
Z'Ll/i > 1
i=1
27/1' .
Ti +Y; > Vie|n
( /) (¥Tfyt*!/7:) 2 [ ]
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A covering-type bilinear knapsack set

Our convex hull is SOCr

{(o eme

Z x1,>1}

m In fact, the above set is Second order cone (SOCr) representable:

x; > |0]2Vie[n]
yi > [0]2Vie[n]
Sui-1 > [0
i=1
2u;
T +vYy; v Vieln
o 2 |y | e
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Convex hull of a general one-constraint quadratic constraint

Our next goal

Theorem (Santana, D. (2019))

S={xeR"| 2'Qr+a’'z=g, e P}, (2)

where Q € R™™ is a symmetric matriz, « € R", ge R and
P :={x| Az <b} is a polytope. Then conv(S) is second order cone
representable.

m The proof is contructive. So in principle, we can build the convex
hull using the proof.

m The size of the second order “extended formulation” is
exponential in size.

m The result holds if we replace the quadratic equation with an
inequality.
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Main ingredients to proof theorem

Basically 3 ingredients:

m Hillestad-Jacobsen Theorem on reverse convex sets.
m Richard-Tawarmalani lemma for continuous function.

m Convex hull of union of conic sets.
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Convex hull of a general one-constraint quadratic constraint
I

ngredient 1: Reverse convex sets

A common structure

S=r\|Uint(C? |,
i=1

where P is a polyope and C"’s are closed convex sets.

m Where have we seen this before in context of integer
programming? When m = 1: Intersection cuts!
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where P is a polyope and C*’s are closed convex sets.
m Where have we seen this before in context of integer
programming? When m = 1: Intersection cuts!
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A common structure

m

S=P\|Uint(C" ],
=1

where P is a polyope and C*’s are closed convex sets.
m Where have we seen this before in context of integer
programming? When m = 1: Intersection cuts!

“Fractional vertex”
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ngredient 1: Reverse convex sets

A common structure

m

S=P\|Uint(C" ],
=1

where P is a polyope and C*’s are closed convex sets.
m Where have we seen this before in context of integer
programming? When m = 1: Intersection cuts!

Lattice-free set

“Fractional vertex”

Dey Convexification in global optimization



Convexification in global optimization

Convex hull of a general one-constraint quadratic constraint

Ingredient 1: Reverse convex sets

A common structure

m

S=P\|Uint(C" ],
=1

where P is a polyope and C*’s are closed convex sets.
m Where have we seen this before in context of integer
programming? When m = 1: Intersection cuts!

Lattice-free set

“Fractional vertex”
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Ingredient 1: Reverse convex sets

A common structure

m

S=P\|Uint(C" ],
=1

where P is a polyope and C*’s are closed convex sets.
m Where have we seen this before in context of integer
programming? When m = 1: Intersection cuts!

Lattice-free set
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Ingredient 1: Reverse convex sets

m > 2

c3

ct

CZ
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Ingredient 1: Reverse convex sets

m > 2

c3

CZ
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Ingredient 1: Reverse convex sets

Do we have a theorem?

Theorem (Hillestad, Jacobsen (1980))

Let P cR™ be a polytope and let C*,...,C™ be closed convex sets.
Then
conv (P\(U int(C’i)) )
i=1

The proof is again going to use the Krein-Milman Theorem. In
particular, we will prove that S = P\ (U}, int(C?)) has a finite
number of extreme points.

s a polytope.
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Ingredient 1: Reverse convex sets

A key Lemma

condition for extreme points of S

m

S=P\|(Uint(C") |,
i=1

where P is a polyope and C*’s are closed convex sets.

Let F be a face of P of dimension d. Let 2° € rel.int(F) be an
extreme point of S. Then z° belongs to the boundary of at least d of
the convex sets C's.
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Ingredient 1: Reverse convex sets

Proof of Lemma

Application of separation

theorem for convex set

m Assume by contradiction:
20 e relint (F) and 0 ¢
2% € bnd(C?) for i € [k] .
where k < d. - a
m Let (a’)"z < b’ be a
separating hyperplane
between z° and int(C*) for /
1€ []f] Let 2
Vi={z|(a")Tx =b'ie[k]}
m Since dim(F') = d and
dim (V') > n -k, we have
dim(affhull(F) nV) >
d-k>1.
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Ingredient 1: Reverse convex sets

Proof of Lemma

Application of separation

theorem for convex set

m Assume by contradiction: ,
20 e relint (F) and o ¢
2% € bnd(C?) for i € [k]
where £ < d. - (e
m Let (a’)"z < b’ be a
separating hyperplane
between z° and int(C*) for '
1€ []f] Let e
Vi={z|(a")Tx =b'ie[k]}
m Since dim(F') = d and
dim (V') > n -k, we have
dim(affhull(F) nV) >
d-k>1.
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Ingredient 1: Reverse convex sets

Proof of Lemma

Application of separation

theorem for convex set

m Assume by contradiction: ,
20 e relint (F) and o ¢
2% € bnd(C?) for i € [k]
where £ < d. - (e
m Let (a’)"z < b’ be a
separating hyperplane
between z° and int(C*) for '
1€ []f] Let e
Vi={z|(a")Tx =b'ie[k]}
m Since dim(F') = d and
dim (V') > n -k, we have
dim(affhull(F) nV) >
d-k>1.
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Convex hull of a general one-constraint quadratic constraint
I

ngredient 1: Reverse convex sets

Proof of Lemma

Application of separation

theorem for convex set

m Also there is a ball B, v ¢

centered at z¥, such that (i) i\
Bnaffhull(F) ¢ F, (ii) -
BnCi=@ie{k+1,...,m}.

m Then, ol
Bn (affhull(F) n V) ¢ ﬁniff;?%j
F Uiy int(C*) and and C
dim (B n (aff.hull(F)nV)) >
1.

m So 2 is not an extreme
point in S.

c?
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Convex hull of a general one-constraint quadratic constraint
Ingredient 1: Reverse convex sets

Proof of Lemma

Application of separation

theorem for convex set

m Also there is a ball B, o , Y c
im of B X
centered at 2V, such that (i) |intersected
Bnaff.hull(F) c F, (ii) with V>=1 ; . a
BnCi=@ie{k+1,...,m}.
m Then, B
Bn (affhull(F)nV) ¢ B does not
K intersect C?
F U, int(C*) and and C3 o
dim (B n (aff hull(F) nV)) >
1.
m So z¥ is not an extreme
point in S.
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Ingredient 1: Reverse convex sets

Proof of Lemma

Application of separation

theorem for convex set

m Also there is a ball B, o , Y c
im of B X
centered at 2¥, such that (i) |intersected \
Bnaff.hull(F) c F, (ii) with vV >=1 ; . c
BnCi=@ie{k+1,...,m}. i A
Then 8 x° not extreme
[ , &
Bn (affhull(F) n V) ¢ B does not
K intersect C?
F AN U;Zl int(07) and and C3 c2
dim (B n (aff hull(F) nV)) >
1.
m So z¥ is not an extreme
point in S.
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Ingredient 1: Reverse convex sets

Comments about lemma

m Already proves theorem for m =1 case: Since m = 1, points in P that
are in the relative interior of faces of dimension 2 or higher are not
extreme points. So all extreme points of S are either (i) on points in
edges (one-dim face of P) of P which intersect with the boundary of
C's or (ii) extreme points of P = number of extreme points of S is
finite.

m For m > 1: Not enough to prove Theorem, since (for example, convex
set can share parts of boundary) there can infinite points satisfying the
condition of Lemma. Note that the Lemma’s condition is not a
sufficient condition:

Dey Convexification in global optimization



Convexification in global optimization

Convex hull of a general one-constraint quadratic constraint
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Comments about lemma

m Already proves theorem for m =1 case: Since m = 1, points in P that
are in the relative interior of faces of dimension 2 or higher are not
extreme points. So all extreme points of S are either (i) on points in
edges (one-dim face of P) of P which intersect with the boundary of
C's or (ii) extreme points of P = number of extreme points of S is
finite.

m For m > 1: Not enough to prove Theorem, since (for example, convex
set can share parts of boundary) there can infinite points satisfying the
condition of Lemma. Note that the Lemma’s condition is not a
sufficient condition:
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Ingredient 1: Reverse convex sets

Comments about lemma

m Already proves theorem for m =1 case: Since m = 1, points in P that
are in the relative interior of faces of dimension 2 or higher are not
extreme points. So all extreme points of S are either (i) on points in
edges (one-dim face of P) of P which intersect with the boundary of
C's or (ii) extreme points of P = number of extreme points of S is
finite.

m For m > 1: Not enough to prove Theorem, since (for example, convex
set can share parts of boundary) there can infinite points satisfying the
condition of Lemma. Note that the Lemma’s condition is not a
sufficient condition:

ct
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Ingredient 1: Reverse convex sets

Comments about lemma

m Already proves theorem for m =1 case: Since m = 1, points in P that
are in the relative interior of faces of dimension 2 or higher are not
extreme points. So all extreme points of S are either (i) on points in
edges (one-dim face of P) of P which intersect with the boundary of
C's or (ii) extreme points of P = number of extreme points of S is
finite.

m For m > 1: Not enough to prove Theorem, since (for example, convex
set can share parts of boundary) there can infinite points satisfying the
condition of Lemma. Note that the Lemma’s condition is not a

sufficient condition:

{
/
|
— 7 |
T ——
Convexification in global optimization




Convexification in global optimization

Convex hull of a general one-constraint quadratic constraint

Ingredient 1: Reverse convex sets

Comments about lemma

m Already proves theorem for m =1 case: Since m = 1, points in P that
are in the relative interior of faces of dimension 2 or higher are not
extreme points. So all extreme points of S are either (i) on points in
edges (one-dim face of P) of P which intersect with the boundary of
C's or (ii) extreme points of P = number of extreme points of S is
finite.

m For m > 1: Not enough to prove Theorem, since (for example, convex
set can share parts of boundary) there can infinite points satisfying the
condition of Lemma. Note that the Lemma’s condition is not a

sufficient condition:

{ Are these
: extreme
\T points of S?

e ——
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Ingredient 1: Reverse convex sets

Comments about lemma

m Already proves theorem for m =1 case: Since m = 1, points in P that
are in the relative interior of faces of dimension 2 or higher are not
extreme points. So all extreme points of S are either (i) on points in
edges (one-dim face of P) of P which intersect with the boundary of
C's or (ii) extreme points of P = number of extreme points of S is
finite.

m For m > 1: Not enough to prove Theorem, since (for example, convex
set can share parts of boundary) there can infinite points satisfying the
condition of Lemma. Note that the Lemma’s condition is not a

sufficient condition:

conv(S)
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Ingredient 1: Reverse convex sets

One more idea to prove theorem

Dominating pattern

Let ', 2% € S. We say that the pattern of 22 dominates the pattern of
xt if:
2! and z? belong to the relative interior of the same face F' of P
B If 2! e bud(C;), then 22 € bnd(C;).

Dey Convexification in global optimization



Convexification in global optimization

Convex hull of a general one-constraint quadratic constraint

Ingredient 1: Reverse convex sets

Another lemma

Lemma

Let 21, 2% € S be distinct points. If the pattern of x? dominates the
pattern of x*, then x' is not an extreme point of S.

This lemma completes the proof of the Theorem:

m We want to prove total number of extreme points in finite.

m Lemma 1 tell us that for an extreme point, which is in rel.int of a
face F' of dim d, it must be on the boundary of d convex sets.

m For any face and any “pattern” of convex sets, there can only be
one extreme point of S. Thus, the number of extreme points of S
is finite.

Dey Convexification in global optimization



Convexification in global optimization

Convex hull of a general one-constraint quadratic constraint

Ingredient 1: Reverse convex sets

Proof of Lemma 2

m 22 dominates z!.

= WLOG let z!,22% € bnd(C?) for
i € [k] and there is a ball B centered
around x? such that (i)
Bnaffhull(F) c F and (ii) _
BnCi=gforje{k+1,...,m}. F x /7
m Consider z° € B such that z2 is a
convex combination of z! and z°. It
remains to show 2% € S:

XZ %4 Cl
m Clearly z° ¢ F c P. e
B BnCl =g =" ¢C7 {k+1,...,m}.
m Suppose z° € int(C?) for j € [k], by
dominance z? € €Y, then |

z? e int(C"i), a contradiction. So
z¥ ¢ int(C?) for j e [k].
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ngredient 1: Reverse convex sets

Proof of Lemma 2

m 22 dominates z!.

= WLOG let z!,22% € bnd(C?) for
i € [k] and there is a ball B centered
around x? such that (i)
Bnaffhull(F) c F and (ii)
BnC/=gforje{k+1,...,m}.

m Consider 2° € B such that 2?2 is a
convex combination of z! and z°. It
remains to show 2 € S:

m Clearly z° ¢ F c P.
B BnCl =g =" ¢C7 {k+1,...,m}.
m Suppose z° € int(C?) for j € [k], by
dominance z? € €Y, then
z? €int(C?), a contradiction. So
z¥ ¢ int(C?) for j e [k].
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ngredient 1: Reverse convex sets

Proof of Lemma 2

m 22 dominates z!.

= WLOG let z!,22% € bnd(C?) for
i € [k] and there is a ball B centered
around x? such that (i)
Bnaffhull(F) c F and (ii)
BnC/=gforje{k+1,...,m}.

m Consider 2° € B such that 2?2 is a
convex combination of z! and z°. It
remains to show 2 € S:

m Clearly z° ¢ F c P.
B BnCl =g =" ¢C7 {k+1,...,m}.
m Suppose z° € int(C?) for j € [k], by
dominance z? € €Y, then
z? €int(C?), a contradiction. So
z¥ ¢ int(C?) for j e [k].
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Proof of Lemma 2

m 22 dominates z!.

= WLOG let z!,22% € bnd(C?) for
i€ [k] and there is a ball B centered |
around z? such that (i) |
Bnaffhull(F) ¢ F and (ii) J
BnC/=gforje{k+1,...,m}.

m Consider 2° € B such that 2?2 is a
convex combination of z! and z°. It
remains to show 2 € S:

m Clearly z° ¢ F c P.

B BnCl =g =" ¢C7 {k+1,...,m}.

m Suppose z° € int(C?) for j € [k], by
dominance z? € €Y, then
z? €int(C?), a contradiction. So
z¥ ¢ int(C?) for j e [k].
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Ingredient 2: Dealing with equality sets

The Richard-Tawarmalani Lemma

Lemma (Richard Tawarmalani (2014))

Consider the set S :={z e R"| f(z) =0,z € P} where f is a continuous
function and P is a convex set. Then:

conv () = conv (%) () conv (S*),
where

S= = {xeR"|f(x)<0,zeP}
S* = {zeR"|f(x)20,z¢P}
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Ingredient 2: Dealing with equality sets

Proof of Lemma

m Clearly
conv(S) € conv (5) (") conv (S*)

m So it is sufficient to prove
conv(S) 2 conv (5%) (M) conv (S*)

0

m Pick 2° € conv (S%) Nconv (5%), we need to show 2° € conv(S).
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Ingredient 2: Dealing with equality sets

Claim 1

. <\ - . ) . . . .
Claim: z° € conv (S‘) implies 2° can be written as convex combination of
points in S and at most one point from S\ S.
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Ingredient 2: Dealing with equality sets

Claim 1

. < . . . . . "
Claim: z° € conv (S‘) implies 2° can be written as convex combination of

points in S and at most one point from S\ S.

f(x) =0

Pr

f(x) <=0

m Suppose z° = Y Ny’ A e A, where 4 € S R o
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Ingredient 2: Dealing with equality sets

Claim 1

. < . . . . . "
Claim: z° € conv (S‘) implies 2° can be written as convex combination of

points in S and at most one point from S\ S.

f(x) =0

Pr

f(x) <=0
m Suppose z° = Y Ny’ A e A, where 4 € S R o
m Suppose WLOG, y',3% € S\ S. Two cases:
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Ingredient 2: Dealing with equality sets

Claim 1

. < . . . . .
Claim: z° € conv (S‘) implies 2° can be written as convex combination of

points in S and at most one point from S\ S.

f(x) =0

f(x) <=0
m Suppose z° = Y Ny’ A e A, where 4 € S R Vi
m Suppose WLOG, y',3% € S\ S. Two cases:
By = )\1+)\ Ayt + Xt )ES< In this ooy
case replace the two points y' and y? . -
y3

by the point y° and we have one less
point from S=\ S whose convex
combination gives z°.
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Ingredient 2: Dealing with equality sets

Claim 1

Claim: z° ¢ conv (SS) implies ° can be written as convex combination of
points in S and at most one point from S=\ S.

m Suppose z° = Y7 Ny, A€ A, where ¢’ € S f) =0
m Suppose WLOG, y',3% € S\ 5. Two cases: fx) <=0
.y“ v
my = /\1+/\2 (Ay' +Aoy?) € 5= "y
my = /\1”2 (Ay* + A2y?) € S: In this v
case, we can just move the two points ) Gew y?
1 2 .
vy~ and y“ towards each other to obtain
7" and §* such that (i) D v

)\1:1;1 i AQQQ = )\1y1 ar )\ng, (ii)

7%, 47 € 8% (iii) either 7' € S or §° € S
(Intermediate value theorem). Again
we have one less point from S=\ S

. . . 0
whose convex combination gives z".
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Ingredient 2: Dealing with equality sets

Claim 1

. 0 . . . . . .
Claim: x~ € conv (S‘) implies £~ can be written as convex combination of
points in S and at most one point from S\ S.

m Suppose z° = Y™ Xy, A € A, where y' € S

0

m Suppose VVLOG7 yl,y? € S5\ S. Two cases:

m oy = )\1+)\ (Mgt + X2y?) € S<: In this case replace the two points
y!' and 32 by the point y° and we have one less point from S\ S
whose convex combination gives z°.

()\1y + /\gy ) € S*: In this case, we can Just move the

my’i= A1+>\2
two points y* and 3> towards each other to obtain §* and %2 such
that (i) Mg + A2g® = Myt + Xay?, (i) 9%, 92 € S* (iii) either §' € S
or 2 € S (Intermediate value theorem). Again we have one less

q < 9 q Q
point from S= \ S whose convex combination gives z°.
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Ingredient 2: Dealing with equality sets

Claim 1

. 0 . . . . . .
Claim: x~ € conv (S‘) implies £~ can be written as convex combination of
points in S and at most one point from S\ S.

m Suppose z° = Y™ Xy, A € A, where y' € S
m Suppose WLOG, y', 4% € S\ S. Two cases:

0

m 0= ﬁ()\lyl + Xa2y?) € S<: In this case replace the two points

y!' and 32 by the point y° and we have one less point from S\ S
whose convex combination gives z°.

m oyl = P (M1y' + A2y?) € S%: In this case, we can just move the

two points y* and 3> towards each other to obtain §* and %2 such
that (i) Mg + A2g® = Myt + Xay?, (i) 9%, 92 € S* (iii) either §' € S
or 2 € S (Intermediate value theorem). Again we have one less

q < 9 q Q
point from S= \ S whose convex combination gives z°.

m Repeat above argument finite number of times to arrive at Claim.
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Ingredient 2: Dealing with equality sets

Completing proof of Lemma

m Remember, for 2° € conv (5%) Nconv (5%), we need to show

20 € conv(S).

m From previous claim applied to S= and S=:

n
= 0y" + DAy, AeA eSSy eSix1 (3)
i=1
n . .
xoz,uowo-kz;tiwz, pelAw’eS* weSi>1. (4)
i=1
m (Again) by , suppose

20 = yyY + (1 - 4)w" satisfies 2 € S for 7 € [0,1]. Then by taking
suitable convex combination of (3) and (4), 30 € A

2 2n
802" + Z 0y + Z Sw™ =2 NeA, 20y wieSi>1.
i=1

i=n+1
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Ingredient 2: Dealing with equality sets

An important corollary

Theorem (Hillestad, Jacobsen (1980))

Let P < R™ be a polytope and let C*,...C™ be closed convex sets. Then

conv (P\([j1 int(Ci)))

is a polytope.

Lemma (Richard Tawarmalani (2014))

Consider the set S :={x e R"| f(x) =0,z € P} where f is a continuous
function and P is a conver set. Then:

conv(S) = conv (S%) (M conv (S7),

where

[95)
in
Il

{zeR"|f(z) <0,z €P}
{zeR"|f(z) 20,z ¢P}

n
%
I
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Ingredient 2: Dealing with equality sets

An important corollary: The SOCr-Boundary Corollary
Let S:={z e P|f(x) =0} such that

m f:R" > R is real-valued convex function such that {z| f(z) <0} is
SOCr.

m P cR" is a polytope.
Then conv(S) is SOCr.

m Convexity implies continuity of f, so by the Richard-Tawarmalani
Lemma, conv(S) = conv(S=) n conv(S>).
m conv(S®) = {z e P|f(x) <0} = {z]| f(z) <0} n P.
——————
SOCr
m conv(S*) = {z € P| f(z) >0}), so conv(S*) is a polytope by the
| —
=Pint({z| f(x)<0}
Hillestad-Jacobsen Theorem. A polytope is a SOCr representable.
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Ingredient 2: Dealing with equality sets

An important corollary: The SOCr-Boundary Corollary

Let S:={z e P|f(x) =0} such that

m f:R" —> R is real-valued convex function such that {z| f(z) <0} is
SOCr.

m P cR" is a polytope.
Then conv(S) is SOCr.

If T' is boundary of a SOCr set, then convex hull of 7" interesected with a
polytope is SOCr.
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Ingredient 3: Convex hull of union of conic sets

Ingredient - Convex hull of union of conic sets

Let P :={x e R"|A'z - b' e K'} and P?:= {z e R"| A%z - b% € K?} be
bounded conic sets. Then

xeR™, Azt - b A e K1,
. z' e R™, A%22? b2 (1-)) e K2,
conv(P* | J P?) = Proj, 22 ¢ RM R +a:(2 )
AeR Ae[0,1]
Q

Corollary for SOCr sets

Let S' and S? be two bounded SOCr sets. Then conv(S* U S?) is also
SOCr.
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Ingredient 3: Convex hull of union of conic sets

Proof: conv(P!U P?) ¢ Proj,(Q) inclusion

zeR™, Algt — b A e K1,
| 2t eR™, A2p? —bp?(1-)N) e K2,
Q= 22 eR", =zl + 22,
AeR Ae0,1]

conv(P'UP?) c Proj,(Q)

If 7 € P!, then 7 € Proj,(Q) (by setting z =2' =7, 2> =0, A =1).
Similarly if Z € P2, then 7 € Proj,(Q).

P'U P? ¢ Proj,(Q)

conv(P'J P?) ¢ Proj,(Q) (Because Proj,(Q) is a convex set)
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Ingredient 3: Convex hull of union of conic sets

Proof: conv(P!'JP?) 2 Proj,(Q) inclusion

zeR™, Alzt bt he K1,
z' e R™, A%2? -b2(1-)) e K2, " i1 a9 7
Q= 22 R, z=x'+a2 Let 2,27,2°, A € Q.
AeR Ae[0,1]
Case 1: 0< <1
|
1 ~1
K 5 = (A% - 3p) = A (f{)—bl
K1 ‘W_’ )\_r_/ >\
1S a cone GKI
m So( )6P1

m Similarly:
[ ] Alsoi:)\~(7)+(1_5\). -
m So 7 € conv(P'U P?).

Dey Convexification in global optimization



Convexification in global optimization

Convex hull of a general one-constraint quadratic constraint

Ingredient 3: Convex hull of union of conic sets

Proof: conv(P!U P?) 2 Proj,(Q) inclusion

z eR"™, Al b e K,
1 n 2 2 2 2
= xeR, Ax—b(l—A)EK, ~ ~1 ~2 X
Q= 22 ¢R" v=alta?, Let 2,27 ,2°, A € Q.
AeR Ae[0,1]
Case 2: A =1

mi'eP' since A'#'-b'-1e K'.

m Claim: #° = 0: Note A%%% = 0. If &% # 0, then for any 2° € P2, we have
that for any M >0, A%(2° + M3°) - b° =
MA%E? + A?(2°) - b = A%2° - b? € K2. So 2° + M7* € P? for M >0,
i.e., P? is unbounded, a contradition.

m So Z =& € P! ¢ conv(P' U P?).

Case 3: A=0

Same as previous case
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P

roof of one-row-theorem

One row theorem

Theorem (Santana, D. (2019))

Let
S={xeR"| 2'Qr+a’'z=g, e P}, (5)
where Q € R™™ is a symmetric matriz, « € R", ge R and

P :={x| Az < b} is a polytope. Then conv(S) is second order cone
representable.
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Proof of one-row-theorem

Proof of Thm: Basic building block

m Krein-Milman Theorem: If S is compact,
conv(S) = conv(ext(S5)).
m If ext(S) c UL, Ty € S, then

conv (S) = conv ( 6 conv (Tk))

k=1

m Finally, if conv (T},) is SOCr, then conv (S) is SOCr.

Dey Convexification in global optimization



Convexification in global optimization

Convex hull of a general one-constraint quadratic constraint
P

roof of one-row-theorem

Structure Lemma on Quadratic functions

Consider a . Then exactly
one of the following occurs:

Case 1: It is the boundary of a SOCP representable conver set,

B Case 2: It is the union of boundary of two disjoint SOCP
representable convex set; or

Case 3: It has the property that, through every point, there exists a
straight line that is entirely contained in the surface.
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Structure Lemma on Quadratic functions

Lemma

Consider a . Then exactly
one of the following occurs:

Case 1: It is the boundary of a SOCP representable conver set,

B Case 2: It is the union of boundary of two disjoint SOCP
representable conver set; or

Case 3: It has the property that, through every point, there exists a
straight line that is entirely contained in the surface.
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roof of one-row-theorem

Structure Lemma on Quadratic functions

Consider a . Then exactly
one of the following occurs:

Case 1: It is the boundary of a SOCP representable convex set,

B Case 2: It is the union of boundary of two disjoint SOCP
representable conver set; or

Case 3: It has the property that, through every point, there exists a
straight line that is entirely contained in the surface.
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P

roof of one-row-theorem

Structure Lemma on Quadratic functions

Consider a . Then exactly
one of the following occurs:

Case 1: It is the boundary of a SOCP representable convex set,

B Case 2: It is the union of boundary of two disjoint SOCP
representable conver set; or

Case 3: It has the property that, through every point, there exists a
straight line that is entirely contained in the surface.
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Proof of one-row-theorem

Ruled surface are beautiful!
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Proof of one-row-theorem
Proof of Thm (sketch)

Using the Structure Lemma S = {z e R"|2"Qz + o'z = g,z € P}
If in Case 1 or Case 2: (i.e., the boundry of SOCr convex set or union
of boundary of two SOCr sets), then done!
(Via SOCr-boundary Corollary; and Convex hull of union of SOCr sets
Theorem)
B Otherwise:
Because of the lines (Case 3), no point in the relative interior of
the polytope can be an extreme point;
B Intersect the quadratic with each facet of the polytope;
Each intersection yields a new quadratic set of the same form, but
in lower dimension;

Repeat above argument for each facet.

Basically: (i) Consider all faces of P such that the quadratic on those
faces are in Case 1 or Case 2. (ii) Then for these cases, write down
the conv hull of the quadratic interested with the face— which is
SOCr due to SOCr-boundary Corollary (iii) Take convex hull of
the union of these SOCr set — which is SOCr due to the Convex
hull of union of SOCr sets Theorem,
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P

roof of one-row-theorem

Proof of Structure Lemma

Lemma: Proof of Structure Lemma — Reduction

Let T be a set defined by the a quadratic equation. If F' is an affine
bijective map, then:

T is Casel, Case 2, Case 3 iff F(S) is in Case 1, Case 2, Case 3
(respectively)

Then, we rewrite
T:={ueR"| u"Qu+c'u=d},
as

T= {(w,w,y) e R"+ x R™ x R™ |

Ng+ Mg— ng

Zu;?— Z:lif+ Zyk:dv }7
J=

=1 k=1

where we may assume d > 0.
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Proof of one-row-theorem

Proof of Structure Lemma

7= {(w,2,y) € R xR™ xR |

Ngt Ng— ny
> wy - Zfﬂf+2yk=d,}
i=1 j=1 k=1

Lemma

Assuming T as above and d > 0, we have:

Case Classification

1)n >2 Case 3: straight line
2)ng. <1, m =0 Case 1 or Case 2

3) ngeng- =0, ny <1 Case 1 or Case 2

4) Nge, ng->1, my =1 Case 3: straight line

5) ngr 22, ng- 21, ;=0 Case 3: straight line
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Convex hull of a general one-constraint quadratic constraint
P

roof of one-row-theorem

Proof of Structure Lemma

First four cases are straightforward.

Last case of previous lemma

Mg+ Ng—

T={(w,z) eR™ xR™ | S w?- Y a?=d,},
j=1

i=1

where d > 0, ngs > 2, and n,— > 1. Then through every point in 7',
there exists a straight line that is entirely contained in 7.
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Convex hull of a general one-constraint quadratic constraint

Proof of one-row-theorem

Proof of last case

m Consider a vector (w, ) € (R™7+

xR")eT.

m We want to show that there is a line {(, %) + A(u,v) | X € R} satisfies
the quadratic equation of T, where (u,v) # 0. We consider the case
when (@, z) # 0 [Other case trivial]:

m In this case w #
observe that:

Mg+ 9 ng- 9
Dow;=d+ ) &5 2
i=1 j=1

Mg+

= Z(wl +/\ul

Ng+

2

Z(CEZ‘F)\UZ) YAeR

Ng—

ng- . . Ng+ . ng— . Mg+
= f?i + A Zui— ZU,- + 2 Zwiui—Z@w
=1 =1 =1 =1 =1

Dey
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Convex hull of a general one-constraint quadratic constraint
Proof of one-row-theorem

Proof of last case - contd.

1]
(ko] P
Tg+ ng— g+ ng— Ng+ ng—
=d = \Zﬁ]f—z‘if)ﬂ- /\2 u?_zvf + 2\ Zwiui—Zi‘ivi VYAieR
=1 i=1 =1 =1 i=1 i=1
Tg+ 5 Ng- 9 Mg+ Ng-
< Yug - > v =0, Wiu — Y &ivi =0 (6)
=1 =1 =1 =1

m Weset v1 =1 and v; =0 for all j € {2,...,n4-}. Then satisfying (6) is
equivalent to finding real values of u satisfying:

Ng+ Ng+

2 . .
Zuzzl, Zwiuzle
i=1 i=1

m This is the intersection of a circle of radius 1 in dimension two or

higher (since ng+ > 2 in this case) and a hyperplane whose distance

from the origin is ulﬁ!z . Done!
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Convex hull of a general one-constraint quadratic constraint
P

roof of one-row-theorem

Discussion

] Classify: conv.hull of QCQP substructure is socr?\

Is SOCP representable:
One quadratic equality (or inequality) constraint M polytope.

B Two quadratic inequalities (

Is not SOCP representable:

Already in 10 variables, 5 quadratic equalities, 4 quadratic
inequalities, 3 linear inequalities ( )
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Convex hull of a general one-constraint quadratic constraint

Proof of one-row-theorem

Other simple sets (with mostly SDP based convex
hulls): highly incomplete literature review

m Related to study of generalized trust region problem:
inf  2"Q% + (A%)Tx st. 2'Q'z+ (A z+b' <0
IFradkov and Yakubovich (1979)] showed SDP relaxation i 1s tlght
ince then work by: [Sturm, Zhang (2003)], [Ye, Zhang (2003)]; [Beck,
Eldar(2005)] [Burer, Anstreicher (2013)], [](};11\11111(11. Li (2014)],
[Yang, Burer (2015) (2016)], [Ho-Nguyen, Kilin¢-Karzan (2017)],
[Wang, Kln-Karzan (2019)]

m Explicit descriptions for the convex hull of the intersection of a single
nonconvex quadratic region with other structured sets [Yildiran
(2009)], [Luo, Ma, So, Ye, Zhang (2010)], [Bienstock, Michalka (2014)],
[Burer (2010)}. [Kiling-Karzan, Yildiz (2015)],[Yildiz, Cornuejols
(2015)], [Burer and Kiling-Karzan (2017)], [Yang, Anstreicher, Burer
(2017)], [Modaresi and Vielma (2017)]

m SDP tight for general QCQPs? [Burer, Ye(2018)], [Wang,
Kiling-Karzan (2020)].

m Approximation Guarantees. [Nesterov (1997)], [Ye(1999)] [Ben-Tal,
Nemirovski (2001)]
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Back to convexification of functions: efficiency and approximation

A simple example
Consider:

f(x) = bx1xy + 3x104 + Tx324 OVer S :=[0,1]*

m By edge-concavity of f(z), we have that concave envelope can be
obtained by just examining the 2% extreme points.

m What if I add the term-wise concave envelopes?

g(z) = {Bwy+3ws+Tws|
wy = convg 12 (z122) (),
Wy = conv[m]z(lﬂlu)(x)v

w3 = convig 172 (z374) () }

How good of an approximation is g(z) of convyg 134 (f)(x)?
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Back to convexification of functions: efficiency and approximation

“Positive” result about “positive” coefficients

Theorem [Crama (1993)], [Coppersmith, Gunlik, Lee, Leung (1999)],

[Meyer, Floudas (2005)]

Consider the function f(z):[0,1]" — R given by:

f(z) = Z QAjj LT

(i,j)eE

If a;; >0 VY (i,7) € E, then the concave envelope of f is given by
(weighted) sum of the concave envelope of the individual functions
Tij-
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Back to convexification of functions: efficiency and approximation

Proof: Thanks total unimodularity!

f(x) = 5xywy + 3x24 + Txzzy over S:=[0,1]*

g(x) = max bwi+ 3wy +3ws
s.t. w1 <x1,w; < To
Wwo < X1, W2 < Ty
w3 < x3,W3 < Ty
1>w>0.

m Lets say we are computing concave envelope at & of f. Let w be
the optimal solution of the above.

m g is concave function: g(&) > concpy 134 f(2)(Z).

m By TU matrix treating x,w as variables (and therefore integrality
of the polytope in the x,w space), (&,10) = %1 Ak (2F, w*) where
(z*,wk) are integral and A € A.

m g(2) = 5y + 3y + Tz = ¥ Ap(5wh + 3wh + Twh) <
conco 34 f(2) ().
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Back to convexification of functions: efficiency and approximation

More generally...

m Given f(z) = ¥(; jyer @ijTiz; and a particular & € [0,1]" let:
ideal(Z) = concg 11 (f)(&) — convg 11 (f)(Z)
and
efficient (&) = McCormick Upper(f)(2) — McCormick Lower(f)(Z)

m Clearly efficient(Z) > ideal(Z).
’ How much larger (worse) is efficient(#) in comparison to ideal(Z)? ‘
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Back to convexification of functions: efficiency and approximation

Answers

m Consider the graph G(V, E) where V is the set of nodes and F is
the set of terms x;x; in the function f for which a;; # 0.

m Let the weight of edge (7,7) be a;;.

Theorem

ideal(2) = efficient(z) for all & € [0,1]™ iff G is bipartite and each
cycle have even number of positive weights and even number of
negative weights.
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Back to convexification of functions: efficiency and approximation

More Answers...

Theorem ([Luedtke, Namazifar, Linderoth (2012)])

If a;; >0, then

ideal(%) < efficient(Z) < (2 - ) -ideal (%),

1
X(@)/2]
where x(QG) is the chromatic number of the graph (minimum number
of colors needed to color the vertices, so that no two vertices connected
by an edge have the same color).

Theorem ([Boland, D., Kalinowski, Molinaro, Rigterink (2017)])

In general,
ideal(#) < efficient(2) < 600y/n - ideal(%),

where the multipicative ratio is tight upto constants.
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Back to convexification of functions: efficiency and approximation

Proofs for the case ajj 20

Infinite to finite

Theorem ([Luedtke, Namazifar, Linderoth (2012)])

If a;; >0, then

ideal(Z) < efficient (%) < (2 - -ideal(),

)
X(G)/2]

where x(Q) is the chromatic number of the graph (minimum number
of colors needed to color the vertices, so that no two vertices connected
by an edge have the same color).

(Non-trivial) part of Theorem is equivalent to:

1 . . .
Mingeo,1]n ((2 - W) -ideal() — efﬁment(:l:)) >0
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Back to convexification of functions: efficiency and approximation

Proofs for the case ajj 20

Step 1: Infinite to finite

ming.[o,17» ((2 - b((Gl)/Q]) -ideal(z) - efﬁcient(i)) >0

First task:
It is sufficient to prove:

i 1 ideal(z) — efficient(z
mln;;;e{o_é_l},,((Q—W)'ldedl( ) jil t( ))ZO
Let p::(2—1)21
[X(G)/2]
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Back to convexification of functions: efficiency and approximation

Proofs for the case ajj 20

Step 1: Infinite to finite

mingco1)» (p-ideal(Z) - efficient())

= mingepo1]n  (p-concpo e (f)(E) — p-convig 11n (f)(2)
—McCorImck Upper(f)(z) + McCormlck Lower(f)(%))

However, since a;; > 0, we have already seen:
concpg 11 (f) (&) = McCormick Upper(f)(2) | so

= mingo» ((p-1) -concyg, 1] (f)@)-p- corlv[071]7l(f)(£)
+McCormick Lower(f)(Z))
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Back to convexification of functions: efficiency and approximation
Proofs for the case ajj 20

Step 1: Infinite to finite

Let
vi; > 0,
n n(n— 2 17 > 3 i—1 .. . .
MO 1 () € [0,1]7 > [0,1]7 70/ | B0 2 B T i e [n] i+ )
iJ > L,y
Yi < Zj

= MiNgeo,1)n ((p=1)-concpo,11n (f)(2) = p-convig,1» (f)(2)
+McCormick Lower(f)(x))

= ming geme  ((p—1)-concpin (f)(2) — p-convig 11 (f)(2)
+ X (i,5)eE @ijYis)

m p—12>0 implies, (p—1)-concpg 13» (f) is concave.
m convyy 1~ (f) is convex, so —p-convyg 1jn (f)

So the optimal solution can be assumed to be at a vertex of MC!
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Back to convexification of functions: efficiency and approximation

Proofs for the case ajj 20

Step 1: Infinite to finite

Let
yi; 2 0,
. n n(n-1)/2 Yij 2 Ti+Tj— ].7 .o . .
MC:={ (z,y) € [0,1]" x [0,1] Vi, j e [n](i#j)
Yij < Ti,
Yi < X

Proposition [Padberg (1989)]

All the extreme points of MC are in {0, 3,1}"

So:

mingo,1)n ((2 - m) -ideal (%) — efficient(z) ) > 0
) -ideal(2) — efficient(Z) ) > 0

. 1
< Milgeo,1 1yn 2- x(@&)/21
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Back to convexification of functions: efficiency and approximation

Proofs for the case ajj 20

Step 2: Computation of efficient ()

Notation:
m Remember G(V, F)

m For UL, U2, §(U',U?) is the edges of G where one end point is in
U' and the other end point in U2.

= Corresponding to & € {0, 3,1}, let V:=VouV,uWy

Proposition

For z € {O, %, 1}, efficient (%) = % 2 (i.5)ed (Vi Vy) Gig-

m This is just calculation, remembering that the MC concave and
convex envelope ‘cancel out for y;; if z; or x; are in {0,1}".
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Back to convexification of functions: efficiency and approximation

Proofs for the case ajj 20

Step 3: Estimation of ideal(#): concpgqp-(f)(2)

[ideal () = coneo 110 ()(2) — convio, 1 (/) (#) |

First estimate concg,13» (f)(2):

Proposition

For 7 € {0, %, 1}, concyo 11 (f) (%) =
22(4,5)e(Va,h) Gij + % Z(i.j)e&(Vl,Vf) Qg5 + % Z(i,j)ed(vf,vf) Uil
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Back to convexification of functions: efficiency and approximation

Proofs for the case ajj 20

Step 3: Estimation of ideal(#): convy . (f)(2)
Now we want to estimate convyg 1j» (f)(2)
m Remember G(V,E) and V := Vi uV;u V.
m Suppose T} U ch’ is a partition of the nodes in 7. Then:

1 1
= Note 50=7-x(T1UT]?)+f~m(T1uT}’)

] Therefore convg 11 (f)(Z) <
COHV[OJ n (f)(I(Tl @] Tf )) + CODV[OJ]H (f)($(T1 @] T}Z))

m With some simple calculations:
1 . o 1 . a1
éconv[oyun,(f)(:r(Tl uTy))+ Qconv[oﬂl]n(f)(x(Tl uly) = 5 (A+B+C-D),
where:

m A=2%6 es(ry ) Gis

® B =33 )es(my,Ty) Gid

mC-= Z(i,j)ea(Tf,Tf) Qij

m D= Z(i._y)sﬁ(’l';,",'l‘/’) a;j <——— This is a cut among the fractional

vertices! ’ Question: how large can this cut be?
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Back to convexification of functions: efficiency and approximation

Proofs for the case ajj 20

Step 3: Estimation of ideal(#): convy . (f)(2)

Theorem

Assuming a;; > 0 for all (i,7) € E, there exists a cut of value at least:
1 (1 1 )
Aot oo 2 e
2\2" 2x(@)-2) (5s

m Apply this Theorem to the induced subgraph of fractional
vertices.

m Note that the chromatic number cannot increase for a subgraph.
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Back to convexification of functions: efficiency and approximation
P

roofs for the case ajj 20

Putting it all together

m Examining % € {O, %, 1}:
m efficient(2) = %Z(Vt,j)so‘(\q,v}) aij.

. ~ = Y
ideal(£) > Z(i,7)eo(Vi,vi) @7 T 3 L(i,5)ed(Vi.Vy) Bl

1
+3 Z(q:‘j)w(\{f,vf) Qij
1

T L(ig)es (Vi Vi) i T g Ly g)es (Vi V) Y
1
—1 X(i,4)e(Vy,vy) Bij
| V.
TG 2 ig)es(Vy,Vy) Qi

® ideal(2) > % (1 + ﬁ) " 2 (ig)es(V,Vy) Qie

efficient (&) 2x(G)-2
ideal(z) — x(G) °

Dey Convexification in global optimization



Convexification in global optimization

Back to convexification of functions: efficiency and approximation

Proofs for the case ajj 20

Mixed a;; case

Theorem ([Boland, D., Kalinowski, Molinaro, Rigterink (2017)])

In general,
ideal(#) < efficient(#) < 600/n - ideal(%),
where the multipicative ratio is tight upto constants.

Similar techniques, a key result on cuts of graphs:

Theorem ([Boland, D., Kalinowski, Molinaro, Rigterink (2017)])

Let G = (V,E) be a complete graph on vertices V ={1,...,n} and let
a e RM" D2 pe edge weights. Then ther exists a U €V such that

S,
aij| 2 == ai
(i,§)e8 (U, V U) 600vn (; 5yer
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Thank You!
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