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Introduction

The general global optimization paradigm

General optimization problem

min f(x)
s.t. x ∈ S ⊆ Rn,

x ∈ [l, u],

where

1 f is not necessarily a convex function, S is not necessarily a
convex set.

2 Ideal goal: Find a globally optimal solution: x∗, i.e. x∗ ∈ S ∩ [l, u]
such that OPT ∶= f(x∗) ≤ f(x) ∀x ∈ S ∩ [l, u].

3 What we will usually settle for: x∗ ∈ S ∩ [l, u] (may be
approximately feasible) and a lower bound: LB such that:

x∗ ∈ S ∩ [l, u] and gap ∶= f(x
∗) −LB
LB

is “small” .
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Introduction

Solving using Branch-and Bound

Branch-and-bound

min	f(x)	

s.t.	x	in	feasible	region	
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Solving using Branch-and Bound

Branch-and-bound

Op#mal	Solu#on	

Op#mal	
Objec#ve	
func#on	value	
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Solving using Branch-and Bound

Branch-and-bound

Feasible	Point	

Upper	bound	
on	objec#ve	
func#on	

Op#mal	
Objec#ve	
func#on	value	
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Solving using Branch-and Bound

Branch-and-bound

Convex	
relaxa#on	

Op#mal	solu#on	of	convex	relaxa#on	

Lower	bound	
on	objec#ve	
func#on	
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Solving using Branch-and Bound

Branch-and-bound

Convex	
relaxa#on	

Feasible	point		

Upper	bound	
on	objec#ve	
func#on	

Lower	bound	
on	objec#ve	
func#on	

Gap	
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Solving using Branch-and Bound

Branch-and-bound

Current	domain	
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Introduction

Solving using Branch-and Bound

Branch-and-bound

Divide	the	domain	into	two	parts	

x	<=	x_0	 X	>=	x_0	

Dey Convexification in global optimization



4/136

Convexification in global optimization

Introduction

Solving using Branch-and Bound

Branch-and-bound

Lower	bound		for	leF	node	

Upper	bound		for	right	node	
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Introduction

Solving using Branch-and Bound

Branch-and-bound

Lower	bound		for	leF	node	

Upper	bound		for	right	node	

Can	prune	
le7	node!	
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Introduction

Discussion of Branch-and-bound algorithm

The method works because: As the domain becomes “smaller” in
the nodes, we are able to get a better (tighter) lower bound on
f(x). (♣)

Usually S is not a convex set, then we need to obtain both: (1) a
convex function that lower bounds f(x) and (2) A convex
relaxation of S.

Our task is to obtain:
(1) Machinery for obtaining“Good” lower bounding func-
tion that are convex and satisfying (♣)
(2) “Good” convex relaxation of non-convex sets S ∩ [l, u].
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Introduction

Our goals for the next few hours
We want to study “convexification” for:

Quadrically constrainted quadratic program (QCQP)

min x⊺Qx + c⊺x
s.t. x⊺Qix + (ai)⊺x ≤ bi ∀ i ∈ [m]

x ∈ [l, u],

Very general model:

Bounded polynomial optimization (replace higher order terms by
quadratic terms by introducing new variables). For example:

xyz ≤ 3⇔ xy = w,wz ≤ 3.

Bounded integer programs (including 0− 1 integer programs). For
example:

x ∈ {0,1}⇔ x2 − x = 0
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Introduction

Our goals for the next few hours

Beautiful theory of Lasserre hierarchy which gives convex hulls via
a hierarchy of Semi-definite programs (SDPs). (Also called the
sums-of-square approach). We are not covering this theory. /
Instead we will consider simple functions and simple sets that are
relaxations of general QCQPs are consider their “convexification”:
You can think of this as the MILP-approach. Even though there are
nice hierarchies for obtaining convex hulls in IP, in practice, we
construct linear programming relaxations within branch-and-bound
algorithm, which are often strengthened by addition of constraints
obtained from the convexification of simple substructures.

There will be other connections with integer programming...

Usually, we will stick to linear programming (LP) or second
order cone representable (SOCr) convex functions and sets for
our convex relaxations.
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Convex envelope

Definition: Convex envelope

Given S ⊆ Rn and f ∶ Rn → R, we want:

A function g ∶ Rn → R that is an under estimator of f over S and,

g should be convex.

Because (pointwise) supremum of a collection of convex functions is a
convex function, we can achieve “the best possible convex under
estimator” as follows:

Definiton: Convex envelope

Given a set S ⊆ Rn and a function f ∶ S → R, the convex envelope
denoted as convS(f) is:

convS(f)(x) = sup{g(x) ∣ g is convex on conv(S) and g(y) ≤ f(y) ∀y ∈ S}.
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Convex envelope example

Convex envelope

F(x)	

S	
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Convex envelope example

Convex envelope

convS(f)	
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Convex envelope

Another way to think about convex envelope

Definiton: Convex Envelope

Given a set S ⊆ Rn and a function f ∶ S → R,

convS(f)(x) = sup{g(x) ∣ g is convex on conv(S) and g(y) ≤ f(y) ∀y ∈ S}.

Proposition (1)

Given a set S ⊆ Rn and a function f ∶ S → R, let
epiS(f) ∶= {(w,x) ∣w ≥ f(x), x ∈ S} denote the epigraph of f restricted
to S. Then the convex envelope is:

convS(f)(x) = inf{y ∣ (y, x) ∈ conv(epiS(f))} . (1)
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Convex envelope

Convex envelope example contd.

Convex envelope

F(x)	

S	
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Convex envelope

Convex envelope example contd.

Convex envelope

F(x)	

S	

Epigraph	of	f	
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Convex envelope

Convex envelope example contd.

Convex envelope

F(x)	

S	

Epigraph	of	f	

Convex	hull	of	
Epigraph	of	f	
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Convex envelope

A simple property of convex envelope
Proposition (1)

convS(f)(x) = inf{y ∣ (y, x) ∈ conv(epiS(f))} .

Corollary (1)

If x0 is an extreme point of S, then convS(f)(x
0
) = f(x0

).

Proof.

We verify the contrapositive:

Consider any x̂ ∈ S. If convS(f)(x̂) < f(x̂), then (via Proposition (1))
there must be {xi}n+2

i=1 ∈ S:

x̂ =
n+2

∑
i=1

λix
i, f(x̂) >

n+2

∑
i=1

λif(x
i
),

where λ ∈ ∆ (i.e. λi ≥ 0 ∀i ∈ [n + 2], ∑
n+2
i=1 λi = 1).

If x̂ = xi ∀ i, then f(x̂) /≯ ∑
n+2
i=1 λif(x

i
) ⇒ x ≠ xi ⇒ x̂ is not extreme.
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Convex envelope

When does extreme points of S describe the convex
envelope of f(x)?

Let S be a polytope.

We know now that convS(f)(x0) = f(x0) for extreme points.

For x0 ∈ S and x0 /∈ ext(S), we know that

convS(f)(x0) = inf{y ∣ y =∑
i

λif(xi), x0 =∑
i

λix
i, xi ∈ S,λ ∈ ∆} .

It would be nice (why?) if:

convS(f)(x0) = inf{y ∣ y =∑
i

λif(xi), x0 =∑
i

λix
i, xi ∈ ext(S), λ ∈ ∆} .
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Convex envelope

Concave function work: proof by example

Concave function

Concave	
func+on	F(x)	

S	

convS(F)	
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Convex envelope

Sufficient condition for polyhedral convex envelope of
f(x): When f is edge concave

Definiton: Edge concave function

Given a polytope S ⊆ Rn. Let SD = {d1, . . . , dk} be a set of vectors
such that for each edge E (one-dimensional face) of S, SD contains a
vector parallel to E. Let f ∶ S → Rn be a function. We say f is edge
concave for S if it is concave on all line segments in S that are parallel
to an edge of S, i.e., on all the sets of the form:

{y ∈ S ∣ y = x + λd},

for some x ∈ S and d ∈ SD.
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Convex envelope

Example of edge concave function

Bilnear function

S ∶= {(x, y) ∈ R2 ∣0 ≤ x, y ≤ 1}.

Sd = {(0,1), (1,0)}.

f(x, y) = xy is linear for all segments in S that are parallel to an
edge of S.

Therefore f is a edge concave function over S.

Note: f(x, y) = xy is not concave.
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Convex envelope

Polyhedral convex envelope of f(x): f is edge concave

Theorem (Edge concavity gives polyhedral envelope [Tardella (1989)] )

Let S be a polytope and f ∶ S → Rn is an edge concave function. Then
convS(f)(x) = convext(S)(f)(x), where

convext(S)(f)(x) ∶= min{y ∣ y =∑
i

λif(x
i
), x =∑

i

λix
i, xi ∈ ext(S), λ ∈ ∆} .

Corollary [Rikun (1997)]

Let f =∏i xi and S = [l, u]. Then convS(f)(x) = convext(S)(f)(x).
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Convex envelope

Polyhedral convex envelope of f(x): f is edge concave

Theorem (Edge concavity gives polyhedral envelope [Tardella (1989)] )

Let S be a polytope and f ∶ S → Rn is an edge concave function. Then
convS(f)(x) = convext(S)(f)(x), where

convext(S)(f)(x) ∶= min{y ∣ y =∑
i

λif(x
i
), x =∑

i

λix
i, xi ∈ ext(S), λ ∈ ∆} .

Proof sketch

Claim 1: Since f is edge concave, we obtain: f(x) ≥ convext(S)(f)(x)
for all x ∈ S.

Claim 2: If f(x) ≥ convext(S)(f)(x), then

convS(f)(x) = convext(S)(f)(x).
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Convex envelope

Proof of Claim 1

To prove: f(x) ≥ convext(S)(f)(x)

Let x̂ ∈ rel.int(F ), F is a face of S. Proof by induction on the
dimension of F .

Base case: Consider x̂ which belongs to a one-dimensional face of
S, i.e. x̂ belongs to an edge of f . Then since edge-concavity, we
obtain that f(x̂) ≥ convext(S)(f)(x̂).
Inductive step: Let F be a face of S where dim(F ) ≥ 2. Consider
x̂ ∈ rel.int(F ). If we show that there is x1, x2 belonging to proper
faces of F , such that x̂ = λ1x1 + λ2x2, λ1 + λ2 = 1, λ1, λ2 ≥ 0, and
f(x̂) ≥ λ1f(x1) + λ2f(x2). Then applying this argument
recursively to f(x1) and f(x2) we obtain the result.

Indeed, consider an edge of F and let d be the direction of this
edge. Then there exists µ1, µ2 > 0 such that: x̂ + µ1d and x̂ − µ2d
belong to lower dimensional faces of F . Now on this segment
edge-concavity = concavity, so we are done.
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Convex envelope

Proof of Claim 2

convS(f)(x
0
) = inf{y ∣ y =∑

i

λif(x
i
), x0

=∑
i

λix
i, xi ∈ S,λ ∈ ∆} .

convext(S)(f)(x
0
) = inf{y ∣ y =∑

i

λif(x
i
), x0

=∑
i

λix
i, xi ∈ ext(S), λ ∈ ∆} .

To prove: f(x) ≥ convext(S)(f)(x), implies convS(f)(x) = convext(S)(f)(x)

Note that convS(f) ≤ convext(S)(f) (by definition), so it is sufficient to
prove convS(f) ≥ convext(S)(f).

Indeed, observe that
convS(f) ≥ convS (convext(S)(f))

= convext(S)(f)

where the first inequality because of Claim 1, f(x) ≥ convext(S)(f)(x),
and the second inequality because convext(S)(f) is a convex function.
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Convex hull of simple sets

McCormick envelope

McCormick envelope

P ∶= {(w,x, y) ∣w = xy,0 ≤ x, y ≤ 1}

We want to find conv(P ).
P = {(w,x, y) ∣ w = xy

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
f(x,y)=xy

,0 ≤ x, y ≤ 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

S

}

So we need to find the convex envelope (and similarly, concave
envelope) of f(x, y) = xy over x, y ∈ [0,1]).
By previous section result on edge-concavity, we only need to
consider the extreme points of S = [0,1]2.

conv(P ) = conv{(0,0,0), (1,0,0), (0,1,0), (1,1,1)}

conv(P ) = {(w,x, y) ∣w ≥ 0,w ≥ x + y − 1,w ≤ x,w ≤ y
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

McCormick Envelope

}.
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Convex hull of simple sets

McCormick envelope

Alternative proof of validity of McCormick envelope

(x − 0)(y − 0)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

product of 2 non-negative trms

≥ 0⇔ xy ≥ 0 ⇒®
replace w=xy

w ≥ 0.

(1 − x)(1 − y)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

product of 2 non-negative trms

≥ 0⇔ xy ≥ x + y − 1⇒w ≥ x + y − 1.

(x − 0)(1 − y) ≥ 0⇒ w ≤ x.

(1 − x)(y − 0) ≥ 0⇒ w ≤ y.

This is the Reformulation-linearization-techique (RLT) view
point (Sherali-Adams).
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Convex hull of simple sets

McCormick envelope

Our first convex relaxation of QCQP

(QCQP) ∶ min xTA0x + a
T
0 x

s.t. xTAkx + a
T
k x ≤ bk k = 1, . . . ,K

l ≤ x ≤ u

(Lifted QCQP) ∶ min A0 ⋅X
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶

∑i,j(A0)ijXij

+aT0 x

s.t. Ak ⋅X
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

∑i,j(Ak)ijXij

+aTk x ≤ bk k = 1, . . . ,K

l ≤ x ≤ u

X = xx⊺ < − − −Nonconvexity

(Note: X is the “outer product” of x, i.e. X is n × n)
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Convex hull of simple sets

McCormick envelope

Our first convex (LP) relaxation of QCQP
(QCQP) ∶ min xTA0x + a

T
0 x

s.t. xTAkx + a
T
k x ≤ bk k = 1, . . . ,K

l ≤ x ≤ u

(Lifted QCQP) ∶ min A0 ⋅X + aT0 x

s.t. Ak ⋅X + aTk x ≤ bk k = 1, . . . ,K

l ≤ x ≤ u

X = xxT

McCormick (LP) Relaxation: replace X = xx⊺ above by:

Xij ≥ lixj + ljxi − lilj

Xij ≥ uixj + ujxi − uiuj

Xij ≤ lixj + ujxi − liuj

Xij ≤ uixj + ljxi − uilj
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Convex hull of simple sets

McCormick envelope

Semi-definite programming (SDP) relaxation of QCQPs

(QCQP) ∶ min xTA0x + a
T
0 x

s.t. xTAkx + a
T
k x ≤ bk k = 1, . . . ,K

l ≤ x ≤ u

(Lifted QCQP) ∶ min A0 ⋅X + aT0 x

s.t. Ak ⋅X + aTk x ≤ bk k = 1, . . . ,K

l ≤ x ≤ u

X = xxT

SDP Relaxation: replace X − xx⊺ = 0 above by:

X − xx⊺ ∈ cone of positive-semi definite matrix

⇔ [
1 x⊺

x X
] ∈ cone of positive-semi definite matrix.
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Convex hull of simple sets

McCormick envelope

Comments

The SDP relaxation is the first level of the sum-of-square
hierarchy. (We will not discuss this more here)

The McCormick relaxation is first (basic) level of the RLT
hireranchy.

The McCormick relaxation and the SDP relaxation are
incomparable. So many times if one is able to solve SDPs, both
the relaxations are thrown in together.

Note that the McCormick relaxation has the (♣) property, i.e. as
the bounds [l, u] get tighter, the McCormick envelopes gets
better. In particular, if l = u, then the McComick envelope is
exact. Therefore, we can obtain “asymptotic convergence of lower
and upper bound” using a branch and bound tree with
McCormick relaxation, as the size of the tree goes off to infinity.
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Convex hull of simple sets

Extending the McCormick envelope ideas

Extending the McCormick envelope argument: Using
extreme points of S to construct convex hull

(Lifted QCQP) ∶ min A0 ⋅X + aT0 x
s.t. Ak ⋅X + aTk x ≤ bk k = 1, . . . ,K

0 ≤ x ≤ 1

X = xxT

For now ignore the x2i terms and consider the set:

Q ∶= {(X,x) ∈ R
n(n−1)

2 ×Rn ∣Xij = xixj∀i, j ∈ [n], i ≠ j, x ∈ [0,1]n}

(Here l = 0 and u = 1 without loss of generality, by rescaling the
variables.)
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Convex hull of simple sets

Extending the McCormick envelope ideas

Extending the McCormick envelope argument: Using
extreme points of S to construct convex hull

Theorem ([Burer, Letchford (2009)])

Consider the set

Q ∶= {(X,x) ∈ R
n(n−1)

2 ×Rn ∣Xij = xixj∀i, j ∈ [n], i ≠ j, x ∈ [0,1]n}.

Then,

conv(Q) ∶= conv

⎛
⎜
⎜
⎝

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(X,x) ∈ R
n(n−1)

2 ×Rn ∣Xij = xixj∀i, j ∈ [n], i ≠ j, x ∈ {0,1}n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Boolean quadric polytope

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

⎞
⎟
⎟
⎠

.
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Convex hull of simple sets

Extending the McCormick envelope ideas

Krein - Milman theorem

Theorem (Krein - Milman Theorem)

Let S ⊆ Rn be a compact set. Then conv(S) = conv(ext(S)).
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Extending the McCormick envelope ideas

Proof of Theorem
Proof using “Extreme point of S argument”

By Krein - Milman Theorem, It is sufficient to prove that the extreme
points of Q:

Q ∶= {(X,x) ∈ R
n(n−1)

2 ×Rn ∣Xij = xixj∀i, j ∈ [n], i ≠ j, x ∈ [0,1]n}

satisfy x ∈ {0,1}n.

Suppose (X̂, x̂) ∈ Q is an extreme point of S. Assume by contradition
x̂i /∈ {0,1}. Consider the following points:

x
(1)
j = {

x̂j j ≠ i
x̂i + ε j = i

X(1)
uv = {

X̂uv u, v ≠ i

x̂ux
(1)
v v = i

x
(2)
j = {

x̂j j ≠ i
x̂i − ε j = i

X(2)
uv = {

X̂uv u, v ≠ i

x̂ux
(2)
v v = i

Since there is no “square term”, X(⋅) perturbs linearly with
perturbation of one component of x(⋅).

So (X̂, x̂) = 0.5 ⋅ (X(1), x(1)
) + 0.5 ⋅ (X(2), x(2)

), which is the required
contradiction.

Dey Convexification in global optimization
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Convex hull of simple sets

Extending the McCormick envelope ideas

Consequence: Can use IP technology to obtain better
convexification of QCQP!

(Lifted QCQP) ∶ min A0 ⋅X + aT0 x
s.t. Ak ⋅X + aTk x ≤ bk k = 1, . . . ,K

0 ≤ x ≤ 1

X = xxT

Apart from the McCormick inequalities we can also add:

Triangle inequality: xi + xj + xk −Xij −Xjk −Xik ≤ 1 [Padberg
(1989)]

{0, 1
2
} Chvatal-Gomory cuts for BQP recently used successfully

by [Bonami, Günlük, Linderoth (2018)]

BQP ∶= {(X,x) ∣Xij ≥ 0,Xij ≥ xi + xj − 1,Xij ≤ xi,Xij ≤ j ∀ (i, j) ∈ [n], x ∈ {0,1}n}

Dey Convexification in global optimization
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Convexification in global optimization

Incorporating “data” in our sets

Introduction

(Lifted QCQP) ∶ min A0 ⋅X + aT0 x
s.t. Ak ⋅X + aTk x ≤ bk k = 1, . . . ,K

0 ≤ x ≤ 1

X = xxT

We have explored convex hull of set of the form:

Q ∶= {(X,x) ∈ R
n(n−1)

2 ×Rn ∣Xij = xixj∀i, j ∈ [n], i ≠ j, x ∈ [0,1]n}

Now we want to consider sets wich includes the data, for
example: Ak’s.

Dey Convexification in global optimization
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Convexification in global optimization

Incorporating “data” in our sets

A packing-type bilinear knapsack set

A packing-type bilinear knapsack set

Consider the following set:

P ∶= {(x, y) ∈ [0,1]n × [0,1]n ∣
n

∑
i=1

aixiyi ≤ b},

where ai ≥ 0 for all i ∈ [n].

Dey Convexification in global optimization
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Convexification in global optimization

Incorporating “data” in our sets

A packing-type bilinear knapsack set

The convex-hull of packing-type bilinear set

Proposition (3 Coppersmith, Günlük, Lee, Leung (1999))

Let P ∶= {(x, y) ∈ [0,1]n × [0,1]n ∣ ∑i aixiyi ≤ b}. Then

conv(P ) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩
(x, y)

RRRRRRRRRRRRRR

∃w,∑
n
i=1 aiwi ≤ b,

wi, xi, yi ∈ [0,1],wi ≥ xi + yi − 1,
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Relaxed McCormick envelope

∀i ∈ [n]

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

Convex hull is a polytope.

Shows the power of McCormick envelopes.

Dey Convexification in global optimization
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Incorporating “data” in our sets

A packing-type bilinear knapsack set

Proof of Proposition(3): ⊆

conv(P ) ∶= Projx,y

⎛
⎜
⎜
⎜
⎜
⎜
⎝

{(x, y,w) ∣
∑
n
i=1 aiwi ≤ b,

wi, xi, yi ∈ [0,1],wi ≥ xi + yi − 1 ∀i ∈ [n]
}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
R

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

Observe P ⊆ Projx,y(R)⇒ conv(P ) ⊆ Projx,y(R).
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Incorporating “data” in our sets

A packing-type bilinear knapsack set

Proof of Proposition(3): conv(P ) ⊇ Projx,y(R)

conv(P ) ∶= Projx,y

⎛
⎜
⎜
⎜
⎜
⎜
⎝

{(x, y,w) ∣
∑
n
i=1 aiwi ≤ b,

wi, xi, yi ∈ [0,1],wi ≥ xi + yi − 1 ∀i ∈ [n]
}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
R

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

It is sufficient to prove that the (x, y) component of
extreme points of R belong to P .
Let (ŵ, x̂, ŷ) be extreme point of R. For each i:

If ŵi = 0, then (x̂i, ŷi) ∈ {(0,0), (0,1), (1,0)}, i.e.
x̂iŷi = ŵi.

If 0 < ŵi < 1, then
(x̂i, ŷi) ∈ {(0,0), (0,1), (1,0), (1, ŵi), (ŵi,1)}, i.e.
x̂iŷi ≤ ŵi.

If ŵ = 1, then (x̂i, ŷi) ∈ {(0,0), (1,0), (0,1), (1,1)},
i.e. x̂iŷi ≤ ŵi.

Thus, ∑
n
i=1 aix̂iŷi ≤ b. (∵ ai ≥ 0 ∀i ∈ [n] )

Dey Convexification in global optimization
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Incorporating “data” in our sets

A packing-type bilinear knapsack set

Proof of Proposition(3): conv(P ) ⊇ Projx,y(R)

conv(P ) ∶= Projx,y

⎛
⎜
⎜
⎜
⎜
⎜
⎝

{(x, y,w) ∣
∑
n
i=1 aiwi ≤ b,

wi, xi, yi ∈ [0,1],wi ≥ xi + yi − 1 ∀i ∈ [n]
}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
R

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

It is sufficient to prove that the (x, y) component of
extreme points of R belong to P .
Let (ŵ, x̂, ŷ) be extreme point of R. For each i:

If ŵi = 0, then (x̂i, ŷi) ∈ {(0,0), (0,1), (1,0)}, i.e.
x̂iŷi = ŵi.

If 0 < ŵi < 1, then
(x̂i, ŷi) ∈ {(0,0), (0,1), (1,0), (1, ŵi), (ŵi,1)}, i.e.
x̂iŷi ≤ ŵi.

If ŵ = 1, then (x̂i, ŷi) ∈ {(0,0), (1,0), (0,1), (1,1)},
i.e. x̂iŷi ≤ ŵi.

Thus, ∑
n
i=1 aix̂iŷi ≤ b. (∵ ai ≥ 0 ∀i ∈ [n] )

Dey Convexification in global optimization
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Convexification in global optimization

Incorporating “data” in our sets

A packing-type bilinear knapsack set

Proof of Proposition(3): conv(P ) ⊇ Projx,y(R)

conv(P ) ∶= Projx,y

⎛
⎜
⎜
⎜
⎜
⎜
⎝

{(x, y,w) ∣
∑
n
i=1 aiwi ≤ b,

wi, xi, yi ∈ [0,1],wi ≥ xi + yi − 1 ∀i ∈ [n]
}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
R

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

It is sufficient to prove that the (x, y) component of
extreme points of R belong to P .
Let (ŵ, x̂, ŷ) be extreme point of R. For each i:

If ŵi = 0, then (x̂i, ŷi) ∈ {(0,0), (0,1), (1,0)}, i.e.
x̂iŷi = ŵi.

If 0 < ŵi < 1, then
(x̂i, ŷi) ∈ {(0,0), (0,1), (1,0), (1, ŵi), (ŵi,1)}, i.e.
x̂iŷi ≤ ŵi.

If ŵ = 1, then (x̂i, ŷi) ∈ {(0,0), (1,0), (0,1), (1,1)},
i.e. x̂iŷi ≤ ŵi.

Thus, ∑
n
i=1 aix̂iŷi ≤ b. (∵ ai ≥ 0 ∀i ∈ [n] )

w	=	0	

x	+	y	<=	1	+	w	

Dey Convexification in global optimization
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Incorporating “data” in our sets

A packing-type bilinear knapsack set

Proof of Proposition(3): conv(P ) ⊇ Projx,y(R)

conv(P ) ∶= Projx,y

⎛
⎜
⎜
⎜
⎜
⎜
⎝

{(x, y,w) ∣
∑
n
i=1 aiwi ≤ b,

wi, xi, yi ∈ [0,1],wi ≥ xi + yi − 1 ∀i ∈ [n]
}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
R

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

It is sufficient to prove that the (x, y) component of
extreme points of R belong to P .
Let (ŵ, x̂, ŷ) be extreme point of R. For each i:

If ŵi = 0, then (x̂i, ŷi) ∈ {(0,0), (0,1), (1,0)}, i.e.
x̂iŷi = ŵi.

If 0 < ŵi < 1, then
(x̂i, ŷi) ∈ {(0,0), (0,1), (1,0), (1, ŵi), (ŵi,1)}, i.e.
x̂iŷi ≤ ŵi.

If ŵ = 1, then (x̂i, ŷi) ∈ {(0,0), (1,0), (0,1), (1,1)},
i.e. x̂iŷi ≤ ŵi.

Thus, ∑
n
i=1 aix̂iŷi ≤ b. (∵ ai ≥ 0 ∀i ∈ [n] )

0	<	w	<	1	
x	+	y	<=	1	+	w	

Dey Convexification in global optimization
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Incorporating “data” in our sets

A packing-type bilinear knapsack set

Proof of Proposition(3): conv(P ) ⊇ Projx,y(R)

conv(P ) ∶= Projx,y

⎛
⎜
⎜
⎜
⎜
⎜
⎝

{(x, y,w) ∣
∑
n
i=1 aiwi ≤ b,

wi, xi, yi ∈ [0,1],wi ≥ xi + yi − 1 ∀i ∈ [n]
}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
R

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

It is sufficient to prove that the (x, y) component of
extreme points of R belong to P .
Let (ŵ, x̂, ŷ) be extreme point of R. For each i:

If ŵi = 0, then (x̂i, ŷi) ∈ {(0,0), (0,1), (1,0)}, i.e.
x̂iŷi = ŵi.

If 0 < ŵi < 1, then
(x̂i, ŷi) ∈ {(0,0), (0,1), (1,0), (1, ŵi), (ŵi,1)}, i.e.
x̂iŷi ≤ ŵi.

If ŵ = 1, then (x̂i, ŷi) ∈ {(0,0), (1,0), (0,1), (1,1)},
i.e. x̂iŷi ≤ ŵi.

Thus, ∑
n
i=1 aix̂iŷi ≤ b. (∵ ai ≥ 0 ∀i ∈ [n] )

w	=	1	

x	+	y	<=	1	+	w	

Dey Convexification in global optimization
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Incorporating “data” in our sets

Simplex-polytope product

A commonly occuring set

S ∶= {(q, y, v) ∈ Rn1
+ ×Rn2 ×Rn1n2 ∣ vij = qiyj∀i ∈ [n1], j ∈ [n2],Ay ≤ b

´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
y∈P

, q ∈ ∆
²
∑n1

i=1
qi=1

}.

Some applications:

Pooling problem ([Tawarmalani and Sahinidis (2002)])

General substructure in “discretize NLPs” ([Gupte, Ahmed, Cheon, D.
(2013)])

Network interdiction ([Davarnia, Richard, Tawarmalani (2017)])
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Incorporating “data” in our sets

Simplex-polytope product

Convex hull of S

Theorem (Sherali, Alameddine [1992], Tawarmalani (2010),
Kılınç-Karzan (2011))

Let

S ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩
(q, y, v) ∈ Rn1

+
×Rn2 ×Rn1n2

RRRRRRRRRRRRR

vij = qiyj∀i ∈ [n1], j ∈ [n2],
Ay ≤ b,
q ∈ ∆

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

Then conv(S) ∶= conv

⎛
⎜⎜
⎝
⋃n1

i=1 {(q, y, v) ∣ qi = 1, vij = yj , y ∈ P}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Si

⎞
⎟⎟
⎠

.
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Incorporating “data” in our sets

Simplex-polytope product

Proof of Theorem: ⊇
Theorem

Let

S ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩
(q, y, v) ∈ Rn1

+
×Rn2 ×Rn1n2

RRRRRRRRRRRRR

vij = qiyj∀i ∈ [n1], j ∈ [n2],
Ay ≤ b,
q ∈ ∆

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

Then conv(S) ∶= conv

⎛
⎜⎜
⎝
⋃n1

i=1 {(q, y, v) ∣ qi = 1, vij = yj , y ∈ P}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Si

⎞
⎟⎟
⎠

.

Proof of ⊇

Si ⊆ S. ∀i ∈ [n1]
⋃n1

i=1 Si ⊆ S.

conv(⋃n1

i=1 Si) ⊆ conv(S).

Dey Convexification in global optimization
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Incorporating “data” in our sets

Simplex-polytope product

Proof of Theorem: ⊆
S ∶= {(q, y, v) ∈ Rn1

+ ×Rn2 ×Rn1n2 ∣ vij = qiyj∀i ∈ [n1], j ∈ [n2],Ay ≤ b, q ∈ ∆}

conv(S) ∶= conv

⎛
⎜
⎜
⎝

n1

⋃
i=1

{(q, y, v) ∣ qi = 1, vij = yj , y ∈ P}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Si

⎞
⎟
⎟
⎠

.

Proof of ⊆

Pick (q̂, ŷ, v̂) ∈ S. We need to show (q̂, ŷ, v̂) ∈ conv(⋃
n1
i=1 Si)

Let I ⊆ [n1] such that q̂i ≠ 0 for i ∈ I. Then it is easy to verify, (q̂, ŷ, v̂)
is the convex combination of the points of the form for i0 ∈ I:

q̃i0 = ei0
ỹi0 = ŷ

ṽi0ij = {
ŷj if i = i0
0 if i ≠ i0

⎫⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎭

∈ Si0 ∀i0 ∈ I

⇒ (q̂, ŷ, v̂) ∈ conv(⋃
n1
i=1 Si)

Dey Convexification in global optimization
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The Pooling Problem: Network Flow on Tripartite
Graph

Pooling problem : multicommodity network flow
Introduction  Relaxations  MIBLP  Discretization  Conclusion Problem  Review  Approach 

                                                  Akshay Gupte MIBLP and the Pooling problem               1 of 33

Send flows at minimum cost from inputs to outputs via pools in a digraph.
Flows mixed twice: first at pools and then at outputs.

INPUTS POOLS OUTPUTS
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1

Friday, February 15, 13

Network flow problem on
a tripartite directed
graph, with three type of
node: Input Nodes (I),
Pool Nodes (L), Output
Nodes (J).

Send flow from input
nodes via pool nodes to
output nodes.

Each of the arcs and
nodes have capacities of
flow.
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Send flows at minimum cost from inputs to outputs via pools in a digraph.
Flows mixed twice: first at pools and then at outputs.

Raw material contains specifications such as concentrations of sulphur, 
carbon or density, octane number, etc.
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Friday, February 15, 13

Raw material has
specifications (like
sulphur, carbon, etc.).

Raw material gets mixed
at the pool producing
new specification level at
pools.

The material gets further
mixed at the output
nodes.

The output node has
required levels for each
specification.

Dey Convexification in global optimization



52/136

Convexification in global optimization

Incorporating “data” in our sets

Simplex-polytope product

The Pooling Problem: Other Constraints

Pooling problem : multicommodity network flow
Introduction  Relaxations  MIBLP  Discretization  Conclusion Problem  Review  Approach 

                                                  Akshay Gupte MIBLP and the Pooling problem               1 of 33

Send flows at minimum cost from inputs to outputs via pools in a digraph.
Flows mixed twice: first at pools and then at outputs.

Raw material contains specifications such as concentrations of sulphur, 
carbon or density, octane number, etc.

1

2

3

5

INPUTS POOLS OUTPUTS

SPEC 1

SPEC 2

4

5

6

7

3

2

1

4

Friday, February 15, 13

Raw material has
specifications (like
sulphur, carbon, etc.).

Raw material gets mixed
at the pool producing
new specification level at
pools.

The material gets further
mixed at the output
nodes.

The output node has
required levels for each
specification.

Dey Convexification in global optimization



52/136

Convexification in global optimization

Incorporating “data” in our sets

Simplex-polytope product

The Pooling Problem: Other Constraints

Pooling problem : multicommodity network flow
Introduction  Relaxations  MIBLP  Discretization  Conclusion Problem  Review  Approach 

                                                  Akshay Gupte MIBLP and the Pooling problem               1 of 33

Send flows at minimum cost from inputs to outputs via pools in a digraph.
Flows mixed twice: first at pools and then at outputs.

Raw material contains specifications such as concentrations of sulphur, 
carbon or density, octane number, etc.

1

2

3

5

6

7

INPUTS POOLS OUTPUTS

SPEC 1

SPEC 2

4

5

6

7

3

2

1

4

Friday, February 15, 13

Raw material has
specifications (like
sulphur, carbon, etc.).

Raw material gets mixed
at the pool producing
new specification level at
pools.

The material gets further
mixed at the output
nodes.

The output node has
required levels for each
specification.

Dey Convexification in global optimization



52/136

Convexification in global optimization

Incorporating “data” in our sets

Simplex-polytope product

The Pooling Problem: Other Constraints

Pooling problem : multicommodity network flow
Introduction  Relaxations  MIBLP  Discretization  Conclusion Problem  Review  Approach 

                                                  Akshay Gupte MIBLP and the Pooling problem               1 of 33

Send flows at minimum cost from inputs to outputs via pools in a digraph.
Flows mixed twice: first at pools and then at outputs.

Raw material contains specifications such as concentrations of sulphur, 
carbon or density, octane number, etc.

1

2

3

5

6

7

INPUTS POOLS OUTPUTS

SPEC 1

SPEC 2

4

5

6

7

3

2

1

4

Friday, February 15, 13

Raw material has
specifications (like
sulphur, carbon, etc.).

Raw material gets mixed
at the pool producing
new specification level at
pools.

The material gets further
mixed at the output
nodes.

The output node has
required levels for each
specification.

Dey Convexification in global optimization



53/136

Convexification in global optimization

Incorporating “data” in our sets

Simplex-polytope product

Tracking Specification

Pooling problem : multicommodity network flow
Introduction  Relaxations  MIBLP  Discretization  Conclusion Problem  Review  Approach 

                                                  Akshay Gupte MIBLP and the Pooling problem               1 of 33

Send flows at minimum cost from inputs to outputs via pools in a digraph.
Flows mixed twice: first at pools and then at outputs.

Raw material contains specifications such as concentrations of sulphur, 
carbon or density, octane number, etc.
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Data:

λki : The value of
specification k at input node
i.

Variable:

pkl : The value of
specification k at node l

yab: Flow along the arc (ab).

Specification Tracking: ∑
i∈I
λki yil

´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
Inflow of Spec k

= pkl
⎛

⎝
∑
j∈J

ylj
⎞

⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Out flow of Spec k
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The pooling problem: ‘P’ formulation

[Haverly (1978)]

max ∑
ij∈A

wijyij (Maximize profit due to flow)

Subject To:

1 Node and arc capacities.

2 Total flow balance at each node.

3 Specification balance at each pool.

∑
i∈I
λki yil = p

k
l

⎛

⎝
∑
j∈J

ylj
⎞

⎠
< − − −Write McCormick relaxation of these

4 Bounds on pkj for all out put nodes j and specification k.
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Q Model

[Ben-Tal, Eiger, Gershovitz (1994)]
New Variable:

qil ∶ fraction of flow to l from
i ∈ I

∑
i∈I
qil = 1, qil ≥ 0, i ∈ I.

pkl = ∑i∈I λ
k
i qil

vilj ∶ flow from input node i
to output node j via pool
node l.

vilj = qilylj

Introduction Relaxations MIBLP Discretization Conclusion Problem Review Approach

Proportion model : pq-formulation (Tawarmalani et al., Alfaki et al.)

4

3

2

1 q14 = y14P
i yi4

q24 = y24P
i yi4

q34 = y34P
i yi4

6

7

Figure: Single pool system. No pool-pool
arcs

Instead of plk , track
incoming flow ratios

qil : fraction of incoming
flow to l from i ⇥ I
⇥

i�I

qil = 1, qil � 0, i ⇥ I

plk =
�

i�I �ikqil

Can be generalized to
digraphs with pool-pool arcs

Akshay Gupte MIBLP and the Pooling problem 5 of 33

Friday, February 15, 13
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Q Model

max ∑

i∈I,j∈J
wijyij + ∑

i∈I,l∈L,j∈J
(wil +wlj)vilj

s.t. vilj = qilylj ∀i ∈ I, l ∈ L, j ∈ J < − − −Write McCormick relaxation of these

∑

i∈I
qil = 1 ∀l ∈ L

akj (∑
i∈I
yij +∑

l∈L
ylj) ≤∑

i∈I
λki yij + ∑

i∈I,l∈L
λki vilj ≤ b

k
j (∑

i∈I
yij +∑

l∈L
ylj)

Capacity constraints

All variables are non-negative

Dey Convexification in global optimization
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“PQ Model” Improved: Significantly better bounds

[Quesada and Grossmann (1995)], [Tawarmalani and Sahinidis (2002)]

max ∑

i∈I,j∈J
wijyij + ∑

i∈I,l∈L,j∈J
(wil +wlj)vilj

s.t. vilj = qilylj ∀i ∈ I, l ∈ L, j ∈ J < − − −Write McCormick relaxation of these

∑

i∈I
qil = 1 ∀l ∈ L

akj (∑
i∈I
yij +∑

l∈L
ylj) ≤∑

i∈I
λki yij + ∑

i∈I,l∈L
λki vilj ≤ b

k
j (∑

i∈I
yij +∑

l∈L
ylj)

Capacity constraints

All variables are non-negative

∑

i∈I
vilj = ylj ∀l ∈ L, j ∈ J

∑

j∈J
vilj ≤ clqil ∀i ∈ I, l ∈ L.

Dey Convexification in global optimization
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A covering-type bilinear knapsack set

Consider the following set:

P ∶= {(x̃, ỹ) ∈ Rn
+
×Rn

+
∣
n

∑
i=1

aix̃iỹi ≥ b},

where ai ≥ 0 for all i ∈ [n] and b > 0.

Note that this is an unbounded set.
For convenience of analysis consider rescaled version:

P ∶= {(x, y) ∈ Rn+ ×Rn+ ∣
n

∑
i=1

xiyi ≥ 1},

(For example: xi =
ai
b
x̃i, yi = ỹi)

Dey Convexification in global optimization
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Is re-scaling okay?

Observation: Affine bijective map “commutes” with convex hull operation

Let S ⊆ Rn and let f ∶ Rn → R be an affine bijective map. Then:

f(conv(S)) = conv(f(S)).

Proof

x ∈ f(conv(S)) ⇐⇒ ∃y ∶ x = f(y), y =∑
i=1

yiλi, λ ∈ ∆

⇐⇒ ∃y ∶ x = f(y), f(y) =∑
i=1

f(yi)λi, λ ∈ ∆ (f is bij. affine)

⇐⇒ x ∈ conv(f(S)).

Careful: Not usually true if f is only bijective, but not affine!

Dey Convexification in global optimization
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The convex-hull of covering-type bilinear set

Theorem (Tawarmalani, Richard, Chung (2010))

Let P ∶= {(x, y) ∈ Rn
+
×Rn

+
∣ ∑ni=1 xiyi ≥ 1}. Then

conv(P ) ∶= {(x, y) ∈ Rn
+
×Rn

+
∣
n

∑
i=1

√
xiyi ≥ 1} .

Note: ∑ni=1
√
xiyi ≥ 1 is a convex set because:

√
xiyi is a concave function for xi, yi ≥ 0.

So ∑ni=1
√
xiyi is a concave function.

f(xi, yi) ∶=
√
xiyi is a positively-homogenous, i.e.

f(η(u, v)) = ηf(u, v) for all η > 0.

Dey Convexification in global optimization
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Proof of Theorem: “⊆”

P ∶= {(x, y) ∈ Rn
+
×Rn

+
∣
n

∑
i=1

xiyi ≥ 1} .

conv(P ) =®
To prove

{(x, y) ∈ Rn
+
×Rn

+
∣
n

∑
i=1

√
xiyi ≥ 1}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
H

.

conv(P ) ⊆H

Sufficient to prove P ⊆H. Let (x̂, ŷ) ∈ P . Two cases:

If ∃i such that x̂iŷi ≥ 1. Then
√
x̂iŷi ≥ 1 and thus (x̂, ŷ) ∈H.

Else x̂iŷi ≤ 1 for i ∈ [n]. Thus ∑
n
i=1

√
x̂iŷi ≥ ∑

n
i=1 x̂iŷi ≥ 1 and thus

(x̂, ŷ) ∈H.

Dey Convexification in global optimization
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Proof of Theorem: “⊇”
conv(P ) ⊇H

Let (x̂, ŷ) ∶= (x̂1, ŷ1, x̂2, ŷ2, . . . , x̂n, ŷn) ∈H. “WLOG:”

( x̂1, ŷ1

²√
x̂1ŷ1=λ1>0

, x̂2, ŷ2

²√
x̂2ŷ2=λ2>0

, x̂3, ŷ3

²√
x̂3ŷ3=λ3>0

, x̂4, ŷ4

²
x̂4>0,ŷ4=0

. . . , x̂n, ŷn
´¹¹¹¹¹¸¹¹¹¹¶

x̂n=0,ŷn>0

)

So we have λ1 + λ2 + λ3 ≥ 1. Let λ̆i =
λi

λ1+λ2+λ3
∀ i ∈ [3].

Consider the three points:

p1
∶= (

x̂1
λ̆1
, ŷ1
λ̆1
, 0,0, 0,0, x̂4

λ̆1
,0, . . . , 0, ŷn

λ̆1
)

p2
∶= (0,0, x̂2

λ̆2
, ŷ2
λ̆2
, 0,0, 0,0, . . . , 0,0)

p3
∶= (0,0, 0,0, x̂3

λ̆3
, ŷ3
λ̆3
, 0,0, . . . , 0,0)

Trivial to verify that λ̆1p
1
+ λ̆2p

2
+ λ̆3p

3
= (x̂, ŷ), and λ̆1 + λ̆2 + λ̆3 = 1.

x̂1

λ̆1

⋅
ŷ1

λ̆1

= (

√
x̂iŷi

λ̆1

)

2

= (
λ1

λ̆1

)

2

≥ 1⇒ p1
∈ P. Similarly p2

∈ P, p3
∈ P .
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An interpretation of the proof

The result in [Tawarmalani, Richard, Chung (2010)] is more general.

“Two ingredients” in the proof

“Orthogonal disjunction”: Define Pi ∶= {(x, y) ∈ Rn+ ×Rn+ ∣xiyi ≥ 1}.
Then it can be verified that:

conv(P ) = conv(
n

⋃
i=1

Pi) .

Positive homogenity: Pi is convex set. Also,

Pi ∶= {(x, y) ∈ Rn+×R
n
+ ∣

√
xiyi ≥ 1} < −−The “correct way” to write the set

This single term convex hull is described using the positive
homogenous function.

Dey Convexification in global optimization
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Another example of convexification from [Tawarmalani,
Richard, Chung (2010)]

Example

S ∶= {(x1, x2, x3, x4, x5, x6) ∈ R6
+
∣x1x2x3 + x4x5 + x6 ≥ 1}, then

conv(S) ∶= {(x1, x2, x3, x4, x5, x6) ∈ R6
+
∣ (x1x2x3)

1
3 + (x4x5)

1
2 + x6 ≥ 1}

Dey Convexification in global optimization
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Lets talk about “representability” of the convex hull

Up till now, we had polyhedral convex hull. This bilinear covering
set yields our first non-polyhedral example of convex hull.

It turns out the set:

{(x, y) ∈ Rn
+
×Rn

+
∣
n

∑
i=1

√
xiyi ≥ 1}

is second order cone representable (SOCr).

Dey Convexification in global optimization
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A covering-type bilinear knapsack set

A quick review of second order cone representable sets:
Introduction

Polyhedron:

Ax − b ∈ Rm
+

x ∈ Rn

Rm
+

is a closed, convex,
pointed and full dimensional
cone.

Conic set:

Ax − b ∈K
x ∈ Rn

where K is a closed, convex,
pointed and full dimensional cone.
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A covering-type bilinear knapsack set

A quick review of second order cone representable sets:
Introduction

Polyhedron:

Ax − b ∈ Rm
+

x ∈ Rn

Rm
+

is a closed, convex,
pointed and full dimensional
cone.

Conic set:

Ax − b ∈K
x ∈ Rn

where K is a closed, convex,
pointed and full dimensional cone.

Ax	-	b	
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A covering-type bilinear knapsack set

Second order conic representable set

Conic set

Ax − b ∈K

Definiton: Second order cone

K ∶= {u ∈ Rm ∣ ∥(u1, . . . , um−1)∥2 ≤ um }

Second order conic representable (SOCr) set

A set S ⊆ Rn is a second order cone representable if,

S ∶= Projx {(x, y) ∣Ax +Gy − b ∈ (K1 ×K2 ×K3 × ⋅ ⋅ ⋅ ×Kp)} ,

where Ki’s are second order cone. Or equivalently,

S ∶= Projx{(x, y) ∣ ∥A
ix +Giy − bi∥2 ≤ A

i0x +Gi0y − bi0 ∀i ∈ [p]},
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A covering-type bilinear knapsack set

Lets get back to our convex hull

{(x, y) ∈ Rn
+
×Rn

+
∣
n

∑
i=1

√
xiyi ≥ 1}

In fact, the above set is Second order cone (SOCr) representable:

x, y ∈ Rn
+

n

∑
i=1

ui ≥ 1

√
xiyi ≥ ui ∀i ∈ [n]
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A covering-type bilinear knapsack set

Lets get back to our convex hull

{(x, y) ∈ Rn
+
×Rn

+
∣
n

∑
i=1

√
xiyi ≥ 1}

In fact, the above set is Second order cone (SOCr) representable:

x, y ∈ Rn
+

n

∑
i=1

ui ≥ 1

xiyi ≥ u2i ∀i ∈ [n]
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A covering-type bilinear knapsack set

Lets get back to our convex hull

{(x, y) ∈ Rn
+
×Rn

+
∣
n

∑
i=1

√
xiyi ≥ 1}

In fact, the above set is Second order cone (SOCr) representable:

x, y ∈ Rn
+

n

∑
i=1

ui ≥ 1

(xi + yi)2 − (xi − yi)2 ≥ 4u2i ∀i ∈ [n]
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A covering-type bilinear knapsack set

Lets get back to our convex hull

{(x, y) ∈ Rn
+
×Rn

+
∣
n

∑
i=1

√
xiyi ≥ 1}

In fact, the above set is Second order cone (SOCr) representable:

x, y ∈ Rn
+

n

∑
i=1

ui ≥ 1

xi + yi ≥
√

(2ui)2 + (xi − yi)2 ∀i ∈ [n]
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A covering-type bilinear knapsack set

Our convex hull is SOCr

{(x, y) ∈ Rn
+
×Rn

+
∣
n

∑
i=1

√
xiyi ≥ 1}

In fact, the above set is Second order cone (SOCr) representable:

x, y ∈ Rn
+

n

∑
i=1

ui ≥ 1

(xi + yi) ≥ ∥ 2ui
(xi − yi)

∥
2

∀i ∈ [n]
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A covering-type bilinear knapsack set

Our convex hull is SOCr

{(x, y) ∈ Rn
+
×Rn

+
∣
n

∑
i=1

√
xiyi ≥ 1}

In fact, the above set is Second order cone (SOCr) representable:

xi ≥ ∥0∥2∀i ∈ [n]
yi ≥ ∥0∥2∀i ∈ [n]

n

∑
i=1

ui − 1 ≥ ∥0∥2

(xi + yi) ≥ ∥ 2ui
(xi − yi)

∥
2

∀i ∈ [n]
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Convex hull of a general one-constraint quadratic constraint

Our next goal

Theorem (Santana, D. (2019))

Let

S ∶= {x ∈ Rn ∣ x⊺Qx + α⊺x = g, x ∈ P}, (2)

where Q ∈ Rn×n is a symmetric matrix, α ∈ Rn, g ∈ R and
P ∶= {x ∣Ax ≤ b} is a polytope. Then conv(S) is second order cone
representable.

The proof is contructive. So in principle, we can build the convex
hull using the proof.

The size of the second order “extended formulation” is
exponential in size.

The result holds if we replace the quadratic equation with an
inequality.
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Convex hull of a general one-constraint quadratic constraint

Main ingredients to proof theorem

Basically 3 ingredients:

Hillestad-Jacobsen Theorem on reverse convex sets.

Richard-Tawarmalani lemma for continuous function.

Convex hull of union of conic sets.

Dey Convexification in global optimization
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Convex hull of a general one-constraint quadratic constraint

Ingredient 1: Reverse convex sets

A common structure

S ∶= P /(
m

⋃
i=1

int(Ci)) ,

where P is a polyope and Ci’s are closed convex sets.

Where have we seen this before in context of integer
programming? When m = 1: Intersection cuts!

Note that conv(P ∖C) is a polytope!

Dey Convexification in global optimization
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⋃
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where P is a polyope and Ci’s are closed convex sets.

Where have we seen this before in context of integer
programming? When m = 1: Intersection cuts!

P	

Note that conv(P ∖C) is a polytope!

Dey Convexification in global optimization



79/136

Convexification in global optimization

Convex hull of a general one-constraint quadratic constraint

Ingredient 1: Reverse convex sets

A common structure

S ∶= P /(
m

⋃
i=1

int(Ci)) ,

where P is a polyope and Ci’s are closed convex sets.

Where have we seen this before in context of integer
programming? When m = 1: Intersection cuts!

P	

“Frac(onal	vertex”	

Note that conv(P ∖C) is a polytope!
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Ingredient 1: Reverse convex sets

A common structure

S ∶= P /(
m

⋃
i=1

int(Ci)) ,

where P is a polyope and Ci’s are closed convex sets.

Where have we seen this before in context of integer
programming? When m = 1: Intersection cuts!

P	

“Frac(onal	vertex”	

La2ce-free	set	

C	

Note that conv(P ∖C) is a polytope!
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Convex hull of a general one-constraint quadratic constraint

Ingredient 1: Reverse convex sets

A common structure

S ∶= P /(
m

⋃
i=1

int(Ci)) ,

where P is a polyope and Ci’s are closed convex sets.

Where have we seen this before in context of integer
programming? When m = 1: Intersection cuts!

P	

“Frac(onal	vertex”	

La2ce-free	set	

C	

Cut	valid	for	P\C	

Note that conv(P ∖C) is a polytope!
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Convex hull of a general one-constraint quadratic constraint

Ingredient 1: Reverse convex sets

A common structure

S ∶= P /(
m

⋃
i=1

int(Ci)) ,

where P is a polyope and Ci’s are closed convex sets.

Where have we seen this before in context of integer
programming? When m = 1: Intersection cuts!

P	

La2ce-free	set	

C	

conv(P\C)	

Note that conv(P ∖C) is a polytope!
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Ingredient 1: Reverse convex sets

m ≥ 2

P	
C1	

C2	

C3	
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Convex hull of a general one-constraint quadratic constraint

Ingredient 1: Reverse convex sets

m ≥ 2

P	

C1	

C2	

C3	
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Convex hull of a general one-constraint quadratic constraint

Ingredient 1: Reverse convex sets

Do we have a theorem?

Theorem (Hillestad, Jacobsen (1980))

Let P ⊆ Rn be a polytope and let C1, . . . ,Cm be closed convex sets.
Then

conv(P /(
m

⋃
i=1

int(Ci)))

is a polytope.

The proof is again going to use the Krein-Milman Theorem. In
particular, we will prove that S = P /(⋃mi=1 int(Ci)) has a finite
number of extreme points.
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Convex hull of a general one-constraint quadratic constraint

Ingredient 1: Reverse convex sets

A key Lemma

Necesary condition for extreme points of S

Let

S ∶= P /(
m

⋃
i=1

int(Ci)) ,

where P is a polyope and Ci’s are closed convex sets.
Let F be a face of P of dimension d. Let x0 ∈ rel.int(F ) be an
extreme point of S. Then x0 belongs to the boundary of at least d of
the convex sets Cis.
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Convex hull of a general one-constraint quadratic constraint

Ingredient 1: Reverse convex sets

Proof of Lemma

Application of separation
theorem for convex set

Assume by contradiction:
x0 ∈ rel.int(F ) and
x0 ∈ bnd(Ci) for i ∈ [k]
where k < d.

Let (ai)⊺x ≤ bi be a
separating hyperplane
between x0 and int(Ci) for
i ∈ [k]. Let
V ∶= {x ∣ (ai)⊺x = bi i ∈ [k]}
Since dim(F ) = d and
dim(V ) ≥ n − k, we have
dim(aff.hull(F ) ∩ V ) ≥
d − k ≥ 1.

F	
C1	

C2	

C3	

x0	
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Ingredient 1: Reverse convex sets

Proof of Lemma

Application of separation
theorem for convex set

Assume by contradiction:
x0 ∈ rel.int(F ) and
x0 ∈ bnd(Ci) for i ∈ [k]
where k < d.

Let (ai)⊺x ≤ bi be a
separating hyperplane
between x0 and int(Ci) for
i ∈ [k]. Let
V ∶= {x ∣ (ai)⊺x = bi i ∈ [k]}
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dim(V ) ≥ n − k, we have
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d − k ≥ 1.
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Ingredient 1: Reverse convex sets

Proof of Lemma

Application of separation
theorem for convex set

Assume by contradiction:
x0 ∈ rel.int(F ) and
x0 ∈ bnd(Ci) for i ∈ [k]
where k < d.

Let (ai)⊺x ≤ bi be a
separating hyperplane
between x0 and int(Ci) for
i ∈ [k]. Let
V ∶= {x ∣ (ai)⊺x = bi i ∈ [k]}
Since dim(F ) = d and
dim(V ) ≥ n − k, we have
dim(aff.hull(F ) ∩ V ) ≥
d − k ≥ 1.

F	
C1	

C2	

C3	

x0	
V	
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Ingredient 1: Reverse convex sets

Proof of Lemma

Application of separation
theorem for convex set

Also there is a ball B,
centered at x0, such that (i)
B ∩ aff.hull(F ) ⊆ F , (ii)
B ∩Ci = ∅ i ∈ {k + 1, . . . ,m}.

Then,
B ∩ (aff.hull(F ) ∩ V ) ⊆
F ∖⋃mi=1 int(Ci) and
dim (B ∩ (aff.hull(F ) ∩ V )) ≥
1.

So x0 is not an extreme
point in S.

F	 C1	

C2	

C3	

x0	

B	
B		does	not	
intersect	C2	
and	C3	

V	
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Ingredient 1: Reverse convex sets

Proof of Lemma

Application of separation
theorem for convex set

Also there is a ball B,
centered at x0, such that (i)
B ∩ aff.hull(F ) ⊆ F , (ii)
B ∩Ci = ∅ i ∈ {k + 1, . . . ,m}.

Then,
B ∩ (aff.hull(F ) ∩ V ) ⊆
F ∖⋃mi=1 int(Ci) and
dim (B ∩ (aff.hull(F ) ∩ V )) ≥
1.

So x0 is not an extreme
point in S.

F	 C1	

C2	

C3	

x0	

B	
B		does	not	
intersect	C2	
and	C3	

V	
Dim	of	B	
intersected	
with	V	>=	1	
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Ingredient 1: Reverse convex sets

Proof of Lemma

Application of separation
theorem for convex set

Also there is a ball B,
centered at x0, such that (i)
B ∩ aff.hull(F ) ⊆ F , (ii)
B ∩Ci = ∅ i ∈ {k + 1, . . . ,m}.

Then,
B ∩ (aff.hull(F ) ∩ V ) ⊆
F ∖⋃mi=1 int(Ci) and
dim (B ∩ (aff.hull(F ) ∩ V )) ≥
1.

So x0 is not an extreme
point in S.

F	 C1	

C2	

C3	

x0	

B	
B		does	not	
intersect	C2	
and	C3	

V	
Dim	of	B	
intersected	
with	V	>=	1	

x0	not	extreme	
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Ingredient 1: Reverse convex sets

Comments about lemma

Already proves theorem for m = 1 case: Since m = 1, points in P that
are in the relative interior of faces of dimension 2 or higher are not
extreme points. So all extreme points of S are either (i) on points in
edges (one-dim face of P) of P which intersect with the boundary of
C1s or (ii) extreme points of P ⇒ number of extreme points of S is
finite.

For m > 1: Not enough to prove Theorem, since (for example, convex
set can share parts of boundary) there can infinite points satisfying the
condition of Lemma. Note that the Lemma’s condition is not a
sufficient condition:

Dey Convexification in global optimization
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Ingredient 1: Reverse convex sets

Comments about lemma
Already proves theorem for m = 1 case: Since m = 1, points in P that
are in the relative interior of faces of dimension 2 or higher are not
extreme points. So all extreme points of S are either (i) on points in
edges (one-dim face of P) of P which intersect with the boundary of
C1s or (ii) extreme points of P ⇒ number of extreme points of S is
finite.

For m > 1: Not enough to prove Theorem, since (for example, convex
set can share parts of boundary) there can infinite points satisfying the
condition of Lemma. Note that the Lemma’s condition is not a
sufficient condition:

P	

C1	

C2	
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Ingredient 1: Reverse convex sets

Comments about lemma
Already proves theorem for m = 1 case: Since m = 1, points in P that
are in the relative interior of faces of dimension 2 or higher are not
extreme points. So all extreme points of S are either (i) on points in
edges (one-dim face of P) of P which intersect with the boundary of
C1s or (ii) extreme points of P ⇒ number of extreme points of S is
finite.

For m > 1: Not enough to prove Theorem, since (for example, convex
set can share parts of boundary) there can infinite points satisfying the
condition of Lemma. Note that the Lemma’s condition is not a
sufficient condition:

S	
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Ingredient 1: Reverse convex sets

Comments about lemma
Already proves theorem for m = 1 case: Since m = 1, points in P that
are in the relative interior of faces of dimension 2 or higher are not
extreme points. So all extreme points of S are either (i) on points in
edges (one-dim face of P) of P which intersect with the boundary of
C1s or (ii) extreme points of P ⇒ number of extreme points of S is
finite.

For m > 1: Not enough to prove Theorem, since (for example, convex
set can share parts of boundary) there can infinite points satisfying the
condition of Lemma. Note that the Lemma’s condition is not a
sufficient condition:

S	

Are	these	
extreme	
points	of	S?	
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Ingredient 1: Reverse convex sets

Comments about lemma
Already proves theorem for m = 1 case: Since m = 1, points in P that
are in the relative interior of faces of dimension 2 or higher are not
extreme points. So all extreme points of S are either (i) on points in
edges (one-dim face of P) of P which intersect with the boundary of
C1s or (ii) extreme points of P ⇒ number of extreme points of S is
finite.

For m > 1: Not enough to prove Theorem, since (for example, convex
set can share parts of boundary) there can infinite points satisfying the
condition of Lemma. Note that the Lemma’s condition is not a
sufficient condition:

conv(S)	
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Ingredient 1: Reverse convex sets

One more idea to prove theorem

Dominating pattern

Let x1, x2 ∈ S. We say that the pattern of x2 dominates the pattern of
x1 if:

1 x1 and x2 belong to the relative interior of the same face F of P

2 If x1 ∈ bnd(Cj), then x2 ∈ bnd(Cj).

Dey Convexification in global optimization



87/136

Convexification in global optimization

Convex hull of a general one-constraint quadratic constraint

Ingredient 1: Reverse convex sets

Another lemma

Lemma

Let x1, x2 ∈ S be distinct points. If the pattern of x2 dominates the
pattern of x1, then x1 is not an extreme point of S.

This lemma completes the proof of the Theorem:

We want to prove total number of extreme points in finite.

Lemma 1 tell us that for an extreme point, which is in rel.int of a
face F of dim d, it must be on the boundary of d convex sets.

For any face and any “pattern” of convex sets, there can only be
one extreme point of S. Thus, the number of extreme points of S
is finite.
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Ingredient 1: Reverse convex sets

Proof of Lemma 2

x2 dominates x1.

WLOG let x1, x2 ∈ bnd(Ci) for
i ∈ [k] and there is a ball B centered
around x2 such that (i)
B ∩ aff.hull(F ) ⊆ F and (ii)
B ∩Cj = ∅ for j ∈ {k + 1, . . . ,m}.

Consider x0 ∈ B such that x2 is a
convex combination of x1 and x0. It
remains to show x0 ∈ S:

Clearly x0
∈ F ⊆ P .

B∩Cj = ∅⇒ x0
/∈ Cj {k+1, . . . ,m}.

Suppose x0
∈ int(Cj) for j ∈ [k], by

dominance x2
∈ Cj , then

x2
∈ int(Cj), a contradiction. So

x0
/∈ int(Cj) for j ∈ [k].

x2	

x1	

B	

C1	

F	

C2	

C3	

C4	
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The Richard-Tawarmalani Lemma

Lemma (Richard Tawarmalani (2014))

Consider the set S ∶= {x ∈ Rn ∣ f(x) = 0, x ∈ P} where f is a continuous
function and P is a convex set. Then:

conv(S) = conv (S≤)⋂ conv (S≥) ,

where

S≤ ∶= {x ∈ Rn ∣ f(x) ≤ 0, x ∈ P}
S≥ ∶= {x ∈ Rn ∣ f(x) ≥ 0, x ∈ P}

Dey Convexification in global optimization
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Ingredient 2: Dealing with equality sets

Proof of Lemma

Clearly
conv(S) ⊆ conv (S≤)⋂ conv (S≥)

So it is sufficient to prove

conv(S) ⊇ conv (S≤)⋂ conv (S≥)

Pick x0 ∈ conv (S≤)⋂ conv (S≥), we need to show x0 ∈ conv(S).
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Claim 1

Claim: x0
∈ conv (S≤) implies x0 can be written as convex combination of

points in S and at most one point from S≤ ∖ S.

Proof

Suppose x0
= ∑

n+1
i=1 λiy

i, λ ∈ ∆, where yi ∈ S

Suppose WLOG, y1, y2
∈ S≤ ∖ S. Two cases:

y0
∶= 1

λ1+λ2
(λ1y

1
+ λ2y

2
) ∈ S≤: In this

case replace the two points y1 and y2

by the point y0 and we have one less
point from S≤ ∖ S whose convex
combination gives x0.
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f(x)		=0	

y4	
f(x)	<=	0	

y3	 y2	

y1	

x0	
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Claim 1
Claim: x0

∈ conv (S≤) implies x0 can be written as convex combination of
points in S and at most one point from S≤ ∖ S.

Proof

Suppose x0
= ∑

n+1
i=1 λiy

i, λ ∈ ∆, where yi ∈ S

Suppose WLOG, y1, y2
∈ S≤ ∖ S. Two cases:

y0
∶= 1

λ1+λ2
(λ1y

1
+ λ2y

2
) ∈ S≤.

y0
∶= 1

λ1+λ2
(λ1y

1
+ λ2y

2
) ∈ S≥: In this

case, we can just move the two points
y1 and y2 towards each other to obtain
ỹ1 and ỹ2 such that (i)
λ1ỹ

1
+ λ2ỹ

2
= λ1y

1
+ λ2y

2, (ii)
ỹ1, ỹ2

∈ S≤ (iii) either ỹ1
∈ S or ỹ2

∈ S
(Intermediate value theorem). Again
we have one less point from S≤ ∖ S
whose convex combination gives x0.

f(x)		=0	

y4	
f(x)	<=	0	

y3	 y2	

y1	

x0	
y0	

new	y1	

new	y2	
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Claim 1

Claim: x0
∈ conv (S≤) implies x0 can be written as convex combination of

points in S and at most one point from S≤ ∖ S.

Proof

Suppose x0
= ∑

n+1
i=1 λiy

i, λ ∈ ∆, where yi ∈ S

Suppose WLOG, y1, y2
∈ S≤ ∖ S. Two cases:

y0
∶= 1

λ1+λ2
(λ1y

1
+ λ2y

2
) ∈ S≤: In this case replace the two points

y1 and y2 by the point y0 and we have one less point from S≤ ∖ S
whose convex combination gives x0.
y0

∶= 1
λ1+λ2

(λ1y
1
+ λ2y

2
) ∈ S≥: In this case, we can just move the

two points y1 and y2 towards each other to obtain ỹ1 and ỹ2 such
that (i) λ1ỹ

1
+ λ2ỹ

2
= λ1y

1
+ λ2y

2, (ii) ỹ1, ỹ2
∈ S≤ (iii) either ỹ1

∈ S
or ỹ2

∈ S (Intermediate value theorem). Again we have one less
point from S≤ ∖ S whose convex combination gives x0.

Repeat above argument finite number of times to arrive at Claim.
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Completing proof of Lemma

Remember, for x0 ∈ conv (S≤)⋂ conv (S≥), we need to show
x0 ∈ conv(S).
From previous claim applied to S≤ and S≥:

x0 = λ0y0 +
n

∑
i=1

λiy
i, λ ∈ ∆, y0 ∈ S≤, yi ∈ S i ≥ 1 (3)

x0 = µ0w
0 +

n

∑
i=1

µiw
i, µ ∈ ∆,w0 ∈ S≥,wi ∈ S i ≥ 1. (4)

(Again) by intermediate value theorem, suppose
z0 ∶= γy0 + (1 − γ)w0 satisfies z0 ∈ S for γ ∈ [0,1]. Then by taking
suitable convex combination of (3) and (4), ∃δ ∈ ∆

δ0z
0 +

2

∑
i=1

δiy
i +

2n

∑
i=n+1

δiw
i−n = x0, λ ∈ ∆, z0, yi,wi ∈ S i ≥ 1.
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An important corollary
Theorem (Hillestad, Jacobsen (1980))

Let P ⊆ Rn be a polytope and let C1, . . .Cm be closed convex sets. Then

conv(P /(
m

⋃
i=1

int(Ci)))

is a polytope.

Lemma (Richard Tawarmalani (2014))

Consider the set S ∶= {x ∈ Rn ∣ f(x) = 0, x ∈ P} where f is a continuous
function and P is a convex set. Then:

conv(S) = conv (S≤)⋂ conv (S≥) ,

where

S≤ ∶= {x ∈ Rn ∣ f(x) ≤ 0, x ∈ P}

S≥ ∶= {x ∈ Rn ∣ f(x) ≥ 0, x ∈ P}

Dey Convexification in global optimization
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An important corollary: The SOCr-Boundary Corollary
Corollary

Let S ∶= {x ∈ P ∣ f(x) = 0} such that

f ∶ Rn → R is real-valued convex function such that {x ∣ f(x) ≤ 0} is
SOCr.

P ⊆ Rn is a polytope.

Then conv(S) is SOCr.

Proof

Convexity implies continuity of f , so by the Richard-Tawarmalani
Lemma, conv(S) = conv(S≤) ∩ conv(S≥).

conv(S≤) = {x ∈ P ∣ f(x) ≤ 0} = {x ∣ f(x) ≤ 0} ∩ P
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

SOCr

.

conv(S≥) = {x ∈ P ∣ f(x) ≥ 0}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡P∖int({x ∣f(x)≤0}

), so conv(S≥) is a polytope by the

Hillestad-Jacobsen Theorem. A polytope is a SOCr representable.

Dey Convexification in global optimization
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An important corollary: The SOCr-Boundary Corollary

Corollary

Let S ∶= {x ∈ P ∣ f(x) = 0} such that

f ∶ Rn → R is real-valued convex function such that {x ∣ f(x) ≤ 0} is
SOCr.

P ⊆ Rn is a polytope.

Then conv(S) is SOCr.

If T is boundary of a SOCr set, then convex hull of T interesected with a
polytope is SOCr.

Dey Convexification in global optimization
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Ingredient 3: Convex hull of union of conic sets

Ingredient - Convex hull of union of conic sets

Theorem

Let P 1 ∶= {x ∈ Rn ∣A1x − b1 ∈K1} and P 2 ∶= {x ∈ Rn ∣A2x − b2 ∈K2} be
bounded conic sets. Then

conv(P 1⋃P 2) = Projx

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

x ∈ Rn,
x1 ∈ Rn,
x2 ∈ Rn,
λ ∈ R

⎞
⎟⎟⎟
⎠

RRRRRRRRRRRRRRRRRR

A1x1 − b1λ ∈K1,
A2x2 − b2(1 − λ) ∈K2,
x = x1 + x2,
λ ∈ [0,1]

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Q

Corollary for SOCr sets

Let S1 and S2 be two bounded SOCr sets. Then conv(S1⋃S2) is also
SOCr.

Dey Convexification in global optimization
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Proof: conv(P 1⋃P 2) ⊆ Projx(Q) inclusion

Q ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

x ∈ Rn,
x1 ∈ Rn,
x2 ∈ Rn,
λ ∈ R

⎞
⎟⎟⎟
⎠

RRRRRRRRRRRRRRRRRR

A1x1 − b1λ ∈K1,
A2x2 − b2(1 − λ) ∈K2,
x = x1 + x2,
λ ∈ [0,1]

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

conv(P 1⋃P 2) ⊆ Projx(Q)

If x̃ ∈ P 1, then x̃ ∈ Projx(Q) (by setting x = x1 = x̃, x2 = 0, λ = 1).

Similarly if x̃ ∈ P 2, then x̃ ∈ Projx(Q).
P 1⋃P 2 ⊆ Projx(Q)
conv(P 1⋃P 2) ⊆ Projx(Q) (Because Projx(Q) is a convex set)

Dey Convexification in global optimization
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Proof: conv(P 1⋃P 2) ⊇ Projx(Q) inclusion

Q ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

x ∈ Rn,
x1 ∈ Rn,
x2 ∈ Rn,
λ ∈ R

⎞
⎟⎟⎟
⎠

RRRRRRRRRRRRRRRRRR

A1x1 − b1λ ∈K1,
A2x2 − b2(1 − λ) ∈K2,
x = x1 + x2,
λ ∈ [0,1]

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

Let x̃, x̃1, x̃2, λ̃ ∈ Q.

Case 1: 0 < λ̃ < 1

K1 ∋®
K1 is a cone

1

λ̃
(A1x̃1 − λ̃b1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈K1

= A1 ( x̃
1

λ̃
) − b1

So ( x̃1

λ̃
) ∈ P 1.

Similarly: x̃2

1−λ̃
∈ P 2.

Also x̃ = λ̃ ⋅ ( x̃1

λ̃
) + (1 − λ̃) ⋅ x̃2

1−λ̃
.

So x̃ ∈ conv(P 1⋃P 2).
Dey Convexification in global optimization
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Proof: conv(P 1⋃P 2) ⊇ Projx(Q) inclusion

Q ∶=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

⎛
⎜
⎜
⎜
⎝

x ∈ Rn,
x1

∈ Rn,
x2

∈ Rn,
λ ∈ R

⎞
⎟
⎟
⎟
⎠

RRRRRRRRRRRRRRRRRR

A1x1
− b1λ ∈K1,

A2x2
− b2(1 − λ) ∈K2,

x = x1
+ x2,

λ ∈ [0,1]

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

Let x̃, x̃1, x̃2, λ̃ ∈ Q.

Case 2: λ̃ = 1

x̃1
∈ P 1, since A1x̃1

− b1 ⋅ 1 ∈K1.

Claim: x̃2
= 0: Note A2x̃2

= 0. If x̃2
≠ 0, then for any x0

∈ P 2, we have
that for any M > 0, A2

(x0
+Mx̃2

) − b2 =
MA2x̃2

+A2
(x0

) − b2 = A2x0
− b2 ∈K2. So x0

+Mx̃2
∈ P 2 for M > 0,

i.e., P 2 is unbounded, a contradition.

So x̃ = x̃1
∈ P 1

⊆ conv(P 1
∪ P 2

).

Case 3: λ̃ = 0

Same as previous case

Dey Convexification in global optimization
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Proof of one-row-theorem

One row theorem

Theorem (Santana, D. (2019))

Let

S ∶= {x ∈ Rn ∣ x⊺Qx + α⊺x = g, x ∈ P}, (5)

where Q ∈ Rn×n is a symmetric matrix, α ∈ Rn, g ∈ R and
P ∶= {x ∣Ax ≤ b} is a polytope. Then conv(S) is second order cone
representable.
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Proof of Thm: Basic building block

Krein-Milman Theorem: If S is compact,
conv(S) = conv(ext(S)).
If ext(S) ⊆ ⋃mk=1 Tk ⊆ S, then

conv (S) = conv(
m

⋃
k=1

conv (Tk))

Finally, if conv (Tk) is SOCr, then conv (S) is SOCr.

Dey Convexification in global optimization
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Proof of one-row-theorem

Structure Lemma on Quadratic functions

Lemma

Consider a set defined by a single quadratic equation. Then exactly
one of the following occurs:

1 Case 1: It is the boundary of a SOCP representable convex set,

2 Case 2: It is the union of boundary of two disjoint SOCP
representable convex set; or

3 Case 3: It has the property that, through every point, there exists a
straight line that is entirely contained in the surface.

Dey Convexification in global optimization
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Proof of one-row-theorem

Ruled surface are beautiful!

Dey Convexification in global optimization
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Proof of one-row-theorem

Proof of Thm (sketch)
Using the Structure Lemma S ∶= {x ∈ Rn ∣x⊺Qx + α⊺x = g, x ∈ P}

1 If in Case 1 or Case 2: (i.e., the boundry of SOCr convex set or union
of boundary of two SOCr sets), then done!
(Via SOCr-boundary Corollary; and Convex hull of union of SOCr sets
Theorem)

2 Otherwise:

1 Because of the lines (Case 3), no point in the relative interior of
the polytope can be an extreme point;

2 Intersect the quadratic with each facet of the polytope;
3 Each intersection yields a new quadratic set of the same form, but

in lower dimension;

3 Repeat above argument for each facet.

Basically: (i) Consider all faces of P such that the quadratic on those
faces are in Case 1 or Case 2. (ii) Then for these cases, write down
the conv hull of the quadratic interested with the face– which is
SOCr due to SOCr-boundary Corollary (iii) Take convex hull of
the union of these SOCr set — which is SOCr due to the Convex
hull of union of SOCr sets Theorem.

Dey Convexification in global optimization
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Proof of one-row-theorem

Proof of Structure Lemma

Lemma: Proof of Structure Lemma — Reduction

Let T be a set defined by the a quadratic equation. If F is an affine
bijective map, then:

1 T is Case1, Case 2, Case 3 iff F (S) is in Case 1, Case 2, Case 3
(respectively)

Then, we rewrite

T ∶ = {u ∈ Rn ∣ u⊺Qu + c⊺u = d},

as

T = {(w,x, y) ∈ Rnq+ ×Rnq− ×Rnl ∣
nq+

∑
i=1

w2
i −

nq−

∑
j=1

x2j +
nl

∑
k=1

yk = d, },

where we may assume d ≥ 0.
Dey Convexification in global optimization
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Proof of one-row-theorem

Proof of Structure Lemma

T = {(w,x, y) ∈ Rnq+ ×Rnq− ×Rnl ∣
nq+

∑
i=1

w2
i −

nq−

∑
j=1

x2j +
nl

∑
k=1

yk = d,}

Lemma

Assuming T as above and d ≥ 0, we have:

Case Classification
1) nl ≥ 2 Case 3: straight line
2) nq+ ≤ 1, nl = 0 Case 1 or Case 2
3) nq+nq− = 0, nl ≤ 1 Case 1 or Case 2
4) nq+, nq− ≥ 1, nl = 1 Case 3: straight line
5) nq+ ≥ 2, nq− ≥ 1, nl = 0 Case 3: straight line
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Convex hull of a general one-constraint quadratic constraint

Proof of one-row-theorem

Proof of Structure Lemma

First four cases are straightforward.

Last case of previous lemma

T = {(w,x) ∈ Rnq+ ×Rnq− ∣
nq+

∑
i=1

w2
i −

nq−

∑
j=1

x2j = d,},

where d ≥ 0, nq+ ≥ 2, and nq− ≥ 1. Then through every point in T ,
there exists a straight line that is entirely contained in T .
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Convex hull of a general one-constraint quadratic constraint

Proof of one-row-theorem

Proof of last case
Proof

Consider a vector (ŵ, x̂) ∈ (Rnq+ ×Rnq−) ∈ T .

We want to show that there is a line {(ŵ, x̂) + λ(u, v) ∣λ ∈ R} satisfies
the quadratic equation of T , where (u, v) ≠ 0. We consider the case
when (ŵ, x̂) ≠ 0 [Other case trivial]:

In this case ŵ ≠ 0, since otherwise −∑
nq−

j=1 x̂
2
j = d ≥ 0 implies x̂ = 0. Then

observe that:

nq+

∑
i=1

ŵ2
i = d +

nq−

∑
j=1

x̂2
j ≥ x̂

2
1 ⇔

∣x̂1∣

∥ŵ∥2
≤ 1.

d =

nq+

∑
i=1

(ŵi + λui)
2
−

nq−

∑
i=1

(x̂i + λvi)
2
∀λ ∈ R

⇔ d = (

nq+

∑
i=1

ŵ2
i −

nq−

∑
i=1

x̂2
i) + λ

2
(

nq+

∑
i=1

u2
i −

nq−

∑
i=1

v2
i ) + 2λ(

nq+

∑
i=1

ŵiui −
nq−

∑
i=1

x̂ivi) ∀λ ∈ R
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Convex hull of a general one-constraint quadratic constraint

Proof of one-row-theorem

Proof of last case - contd.

∣x̂1∣

∥ŵ∥2
≤ 1.

⇔ d = (

nq+

∑
i=1

ŵ2
i −

nq−

∑
i=1

x̂2
i ) + λ2

(

nq+

∑
i=1

u2
i −

nq−

∑
i=1

v2
i ) + 2λ(

nq+

∑
i=1

ŵiui −
nq−

∑
i=1

x̂ivi) ∀λ ∈ R

⇔

nq+

∑
i=1

u2
i −

nq−

∑
i=1

v2
i = 0,

nq+

∑
i=1

ŵiui −
nq−

∑
i=1

x̂ivi = 0. (6)

We set v1 = 1 and vj = 0 for all j ∈ {2, . . . , nq−}. Then satisfying (6) is
equivalent to finding real values of u satisfying:

nq+

∑
i=1

u2
i = 1,

nq+

∑
i=1

ŵiui = x̂1.

This is the intersection of a circle of radius 1 in dimension two or
higher (since nq+ ≥ 2 in this case) and a hyperplane whose distance

from the origin is ∣x̂1 ∣
∥ŵ∥2

. Done!
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Convex hull of a general one-constraint quadratic constraint

Proof of one-row-theorem

Discussion

Classify: conv.hull of QCQP substructure is SOCr?

Is SOCP representable:

1 One quadratic equality (or inequality) constraint ⋂ polytope.

2 Two quadratic inequalities ([Yıldıran (2009)], [Bienstock,
Michalka (2014)], [Burer, Kılınç-Karzan (2017)], [Modaresi,
Vielma (2017)])

Is not SOCP representable:

1 Already in 10 variables, 5 quadratic equalities, 4 quadratic
inequalities, 3 linear inequalities ([Fawzi (2018)])

Dey Convexification in global optimization



116/136

Convexification in global optimization
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Proof of one-row-theorem

Other simple sets (with mostly SDP based convex
hulls): highly incomplete literature review

Related to study of generalized trust region problem:

inf x⊺Q0x + (A0
)
⊺x s.t. x⊺Q1x + (A1

)
⊺x + b1 ≤ 0

[Fradkov and Yakubovich (1979)] showed SDP relaxation is tight.
Since then work by: [Sturm, Zhang (2003)], [Ye, Zhang (2003)], [Beck,
Eldar(2005)] [Burer, Anstreicher (2013)], [Jeyakumar, Li (2014)],
[Yang, Burer (2015) (2016)], [Ho-Nguyen, Kılınç-Karzan (2017)],
[Wang, Kln-Karzan (2019)]

Explicit descriptions for the convex hull of the intersection of a single
nonconvex quadratic region with other structured sets [Yıldıran
(2009)], [Luo, Ma, So, Ye, Zhang (2010)], [Bienstock, Michalka (2014)],
[Burer (2015)], [Kılınç-Karzan, Yıldız (2015)],[Yıldız, Cornuejols
(2015)], [Burer and Kılınç-Karzan (2017)], [Yang, Anstreicher, Burer
(2017)], [Modaresi and Vielma (2017)]

SDP tight for general QCQPs? [Burer, Ye(2018)], [Wang,
Kılınç-Karzan (2020)].

Approximation Guarantees. [Nesterov (1997)], [Ye(1999)] [Ben-Tal,
Nemirovski (2001)]
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Back to convexification of functions: efficiency and approximation

A simple example

Consider:

f(x) = 5x1x2 + 3x1x4 + 7x3x4 over S ∶= [0,1]4

By edge-concavity of f(x), we have that concave envelope can be
obtained by just examining the 24 extreme points.

What if I add the term-wise concave envelopes?

g(x) = {5w1 + 3w2 + 7w3 ∣
w1 = conv[0,1]2(x1x2)(x),
w2 = conv[0,1]2(x1x4)(x),
w3 = conv[0,1]2(x3x4)(x)}

How good of an approximation is g(x) of conv[0,1]4(f)(x)?
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Back to convexification of functions: efficiency and approximation

“Positive” result about “positive” coefficients

Theorem [Crama (1993)], [Coppersmith, Günlük, Lee, Leung (1999)],
[Meyer, Floudas (2005)]

Consider the function f(x) ∶ [0,1]n → R given by:

f(x) = ∑
(i,j)∈E

aijxixj

If aij ≥ 0 ∀(i, j) ∈ E, then the concave envelope of f is given by
(weighted) sum of the concave envelope of the individual functions
xixj .
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Proof: Thanks total unimodularity!

f(x) = 5x1x2 + 3x1x4 + 7x3x4 over S ∶= [0,1]4

g(x) = max 5w1 + 3w2 + 3w3

s.t. w1 ≤ x1,w1 ≤ x2
w2 ≤ x1,w2 ≤ x4
w3 ≤ x3,w3 ≤ x4
1 ≥ w ≥ 0.

Lets say we are computing concave envelope at x̂ of f . Let ŵ be
the optimal solution of the above.

g is concave function: g(x̂) ≥ conc[0,1]4f(x)(x̂).
By TU matrix treating x,w as variables (and therefore integrality
of the polytope in the x,w space), (x̂, ŵ) = ∑k λk(xk,wk) where
(xk,wk) are integral and λ ∈ ∆.

g(x̂) = 5ŵ1 + 3ŵ2 + 7ŵ3 = ∑k λk(5wk1 + 3wk2 + 7wk3) ≤
conc[0,1]4f(x)(x̂).
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More generally...

Given f(x) = ∑(i,j)∈E aijxixj and a particular x̂ ∈ [0,1]n let:

ideal(x̂) = conc[0,1]n(f)(x̂) − conv[0,1]n(f)(x̂)

and

efficient(x̂) = McCormick Upper(f)(x̂) −McCormick Lower(f)(x̂)

Clearly efficient(x̂) ≥ ideal(x̂).
How much larger (worse) is efficient(x̂) in comparison to ideal(x̂)?
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Back to convexification of functions: efficiency and approximation

Answers

Consider the graph G(V,E) where V is the set of nodes and E is
the set of terms xixj in the function f for which aij ≠ 0.

Let the weight of edge (i, j) be aij .

Theorem

ideal(x̂) = efficient(x̂) for all x̂ ∈ [0,1]n iff G is bipartite and each
cycle have even number of positive weights and even number of
negative weights.

[Luedtke, Namazifar, Linderoth (2012)]

[Misener, Smadbeck, Floudas (2014)]

[Boland, D., Kalinowski, Molinaro, Rigterink (2017)]
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Back to convexification of functions: efficiency and approximation

More Answers...

Theorem ([Luedtke, Namazifar, Linderoth (2012)])

If aij ≥ 0, then

ideal(x̂) ≤ efficient(x̂) ≤ (2 − 1

⌈χ(G)/2⌉) ⋅ ideal(x̂),

where χ(G) is the chromatic number of the graph (minimum number
of colors needed to color the vertices, so that no two vertices connected
by an edge have the same color).

Theorem ([Boland, D., Kalinowski, Molinaro, Rigterink (2017)])

In general,

ideal(x̂) ≤ efficient(x̂) ≤ 600
√
n ⋅ ideal(x̂),

where the multipicative ratio is tight upto constants.
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Proofs for the case aij ≥ 0

Infinite to finite

Theorem ([Luedtke, Namazifar, Linderoth (2012)])

If aij ≥ 0, then

ideal(x̂) ≤ efficient(x̂) ≤ (2 − 1

⌈χ(G)/2⌉) ⋅ ideal(x̂),

where χ(G) is the chromatic number of the graph (minimum number
of colors needed to color the vertices, so that no two vertices connected
by an edge have the same color).

(Non-trivial) part of Theorem is equivalent to:

minx̂∈[0,1]n ((2 − 1

⌈χ(G)/2⌉) ⋅ ideal(x̂) − efficient(x̂)) ≥ 0
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Proofs for the case aij ≥ 0

Step 1: Infinite to finite

minx̂∈[0,1]n ((2 − 1

⌈χ(G)/2⌉) ⋅ ideal(x̂) − efficient(x̂)) ≥ 0

First task:
It is sufficient to prove:

minx̂∈{0, 12 ,1}n ((2 − 1

⌈χ(G)/2⌉) ⋅ ideal(x̂) − efficient(x̂)) ≥ 0

Let ρ ∶= (2 − 1

⌈χ(G)/2⌉) ≥ 1
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Proofs for the case aij ≥ 0

Step 1: Infinite to finite

minx̂∈[0,1]n (ρ ⋅ ideal(x̂) − efficient(x̂))
= minx̂∈[0,1]n (ρ ⋅ conc[0,1]n(f)(x̂) − ρ ⋅ conv[0,1]n(f)(x̂)

−McCormick Upper(f)(x̂) +McCormick Lower(f)(x̂))

However, since aij ≥ 0, we have already seen:

conc[0,1]n(f)(x̂) = McCormick Upper(f)(x̂) , so:

= minx̂∈[0,1]n ((ρ − 1) ⋅ conc[0,1]n(f)(x̂) − ρ ⋅ conv[0,1]n(f)(x̂)
+McCormick Lower(f)(x̂))
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Proofs for the case aij ≥ 0

Step 1: Infinite to finite

Let

MC ∶=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

(x, y) ∈ [0,1]n × [0,1]n(n−1)/2

RRRRRRRRRRRRRRRRRR

yij ≥ 0,
yij ≥ xi + xj − 1,
yij ≤ xi,
yj ≤ xj

∀i, j ∈ [n](i ≠ j)

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

= minx̂∈[0,1]n ((ρ − 1) ⋅ conc[0,1]n(f)(x̂) − ρ ⋅ conv[0,1]n(f)(x̂)
+McCormick Lower(f)(x̂))

= min(x̂,ŷ)∈MC ((ρ − 1) ⋅ conc[0,1]n(f)(x̂) − ρ ⋅ conv[0,1]n(f)(x̂)
+∑(i,j)∈E aijyij)

ρ − 1 ≥ 0 implies, (ρ − 1) ⋅ conc[0,1]n(f) is concave.

conv[0,1]n(f) is convex, so −ρ ⋅ conv[0,1]n(f)

So the optimal solution can be assumed to be at a vertex of MC!
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Proofs for the case aij ≥ 0

Step 1: Infinite to finite

Let

MC ∶=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

(x, y) ∈ [0,1]n × [0,1]n(n−1)/2

RRRRRRRRRRRRRRRRRR

yij ≥ 0,
yij ≥ xi + xj − 1,
yij ≤ xi,
yj ≤ xj

∀i, j ∈ [n](i ≠ j)

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

Proposition [Padberg (1989)]

All the extreme points of MC are in {0, 1
2
,1}n

So:

minx̂∈[0,1]n ((2 − 1
⌈χ(G)/2⌉) ⋅ ideal(x̂) − efficient(x̂)) ≥ 0

⇔ minx̂∈{0, 1
2
,1}n ((2 − 1

⌈χ(G)/2⌉) ⋅ ideal(x̂) − efficient(x̂)) ≥ 0
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Proofs for the case aij ≥ 0

Step 2: Computation of efficient(x̂)

Notation:

Remember G(V,E)
For U1, U2, δ(U1, U2) is the edges of G where one end point is in
U1 and the other end point in U2.

Corresponding to x̂ ∈ {0, 1
2
,1}, let V ∶= V0 ∪ Vf ∪ V1

Proposition

For x̂ ∈ {0, 1
2
,1}, efficient(x̂) = 1

2 ∑(i,j)∈δ(Vf ,Vf )
aij .

This is just calculation, remembering that the MC concave and
convex envelope ‘cancel out for yij if xi or xj are in {0,1}’.
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Proofs for the case aij ≥ 0

Step 3: Estimation of ideal(x̂): conc[0,1]n(f)(x̂)

ideal(x̂) = conc[0,1]n(f)(x̂) − conv[0,1]n(f)(x̂)

First estimate conc[0,1]n(f)(x̂):

Proposition

For x̂ ∈ {0, 1
2
,1}, conc[0,1]n(f)(x̂) =

∑(i,j)∈δ(V1,V1)
aij + 1

2 ∑(i,j)∈δ(V1,Vf )
aij + 1

2 ∑(i,j)∈δ(Vf ,Vf )
aij .
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Proofs for the case aij ≥ 0

Step 3: Estimation of ideal(x̂): conv[0,1]n(f)(x̂)
Now we want to estimate conv[0,1]n(f)(x̂)

Remember G(V,E) and V ∶= V1 ∪ Vf ∪ V0.

Suppose T af ∪ T
b
f is a partition of the nodes in Tf . Then:

Note x̂ =
1

2
⋅ x(T1 ∪ T

a
f ) +

1

2
⋅ x(T1 ∪ T

b
f )

Therefore conv[0,1]n(f)(x̂) ≤
1
2
conv[0,1]n(f)(x(T1 ∪ T

a
f )) +

1
2
conv[0,1]n(f)(x(T1 ∪ T

a
f )).

With some simple calculations:
1

2
conv[0,1]n(f)(x(T1 ∪ T

a
f )) +

1

2
conv[0,1]n(f)(x(T1 ∪ T

a
f ) =

1

2
(A +B +C −D) ,

where:

A = 2∑(i,j)∈δ(T1,T1) aij

B = ∑(i,j)∈δ(T1,Tf ) aij

C = ∑(i,j)∈δ(Tf ,Tf ) aij

D = ∑(i,j)∈δ(Ta
f
,T b

b
) aij < − − − This is a cut among the fractional

vertices! Question: how large can this cut be?
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Proofs for the case aij ≥ 0

Step 3: Estimation of ideal(x̂): conv[0,1]n(f)(x̂)

Theorem

Assuming aij ≥ 0 for all (i, j) ∈ E, there exists a cut of value at least:

1

2
(1

2
+ 1

2χ(G) − 2
) ∑

(i,j)∈E

aij

Apply this Theorem to the induced subgraph of fractional
vertices.

Note that the chromatic number cannot increase for a subgraph.
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Proofs for the case aij ≥ 0

Putting it all together

Examining x̂ ∈ {0, 1
2
,1}:

efficient(x̂) = 1
2∑(i,j)∈δ(Vf ,Vf ) aij .

ideal(x̂) ≥ ∑(i,j)∈δ(V1,V1) aij +
1
2 ∑(i,j)∈δ(V1,Vf ) aij

+ 1
2 ∑(i,j)∈δ(Vf ,Vf ) aij

−∑(i,j)∈δ(V1,V1) aij −
1
2 ∑(i,j)∈δ(V1,Vf ) aij

− 1
4 ∑(i,j)∈δ(Vf ,Vf ) aij

+ 1
4χ(G)−4 ∑(i,j)∈δ(Vf ,Vf ) aij

ideal(x̂) ≥ 1
4
(1 + 1

χ(G)−1
) ⋅∑(i,j)∈δ(Vf ,Vf ) aij .

efficient(x̂)
ideal(x̂) ≤

2χ(G)−2

χ(G) .
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Proofs for the case aij ≥ 0

Mixed aij case

Theorem ([Boland, D., Kalinowski, Molinaro, Rigterink (2017)])

In general,

ideal(x̂) ≤ efficient(x̂) ≤ 600
√
n ⋅ ideal(x̂),

where the multipicative ratio is tight upto constants.

Similar techniques, a key result on cuts of graphs:

Theorem ([Boland, D., Kalinowski, Molinaro, Rigterink (2017)])

Let G = (V,E) be a complete graph on vertices V = {1, . . . , n} and let
a ∈ Rn(n−1)/2 be edge weights. Then ther exists a U ⊆ V such that

RRRRRRRRRRRR
∑

(i,j)∈δ(U,V ∖U)

aij

RRRRRRRRRRRR
≥ 1

600
√
n
⋅ ∑
(i,j)∈E

∣aij ∣
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Proofs for the case aij ≥ 0

Thank You!

Dey Convexification in global optimization


	Introduction
	Convex envelope
	Convex hull of simple sets
	McCormick envelope
	Extending the McCormick envelope ideas

	Incorporating ``data" in our sets
	A packing-type bilinear knapsack set
	Simplex-polytope product
	A covering-type bilinear knapsack set

	Convex hull of a general one-constraint quadratic constraint
	Ingredient 1: Reverse convex sets
	Ingredient 2: Dealing with equality sets
	Ingredient 3: Convex hull of union of conic sets
	Proof of one-row-theorem

	Back to convexification of functions: efficiency and approximation
	Proofs for the case aij 0


